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VI Foreword

and oceans are concerned, because it dissipates the large-scale motions too
much. It was an immense success, though, with users interested in industrial-
flow applications, which shows that the outcomes of research are as unpre-
dictable as turbulence itself! A little later, in the 1970s, the theoretical physi-
cist Kraichnan® developed the important concept of spectral eddy viscosity,
which allows us to go beyond the separation-scale assumption inherent in the
typical eddy-viscosity concept of Smagorinsky. From then on, the history of
large-eddy simulations developed, first in the wake of two schools: Stanford-
Torino, where a dynamic version of Smagorinsky’s model was developed; and
Grenoble, which followed Kraichnan’s footsteps. Then researchers, including
industrial researchers, all around the world became infatuated with these
techniques, being aware of the limits of classical modeling methods based on
the averaged equations of motion (Reynolds equations).

It is a complete account of this young but very rich discipline, the large-
eddy simulation of turbulence, which is presented to us by the young ONERA
researcher Pierre Sagaut, in a book whose reading brings pleasure and inter-
est. Introduction to Large-Eddy Simulation very wisely limits itself to the case
of incompressible fluids, which is a suitable starting point if one wants to avoid
multiplying difficulties. Let us point out, however, that compressible flows
quite often exhibit near-incompressible properties in boundary layers, once
the variation of the molecular viscosity with the temperature has been taken
into account, as predicted by Morkovin in his famous hypothesis.® Pierre
Sagaut shows an impressive culture, describing exhaustively all the subgrid-
modeling methods for simulating the large scales of turbulence, without hes-
itating to give the mathematical details n eded for a proper understanding
of the subject. : .

After a general introduction, he presents and discusses the various filters
used, in cases of statistically homogeneous and inhomogeneous turbulence,
and their applications to Navier-Stokes equations. He very aptly describes
the representation of various tensors in Fourier space, Germano-type relations
obtained by double filtering, and the consequences of Galilean invariance
of the equations. He then goes into the various ways of modeling isotropic
turbulence. This is done first in Fourier space, with the essential wave-vector
triad idea, and a discussion of the transfer-localness concept. An excellent
review of spectral-viscosity models is provided, with developments sometimes
beyond the original papers. Then he goes to physical space, with a discussion
of the structure-function models and the dynamic procedures (Fulerian and
Lagrangian, with energy equations and so forth). The study is then general-
ized to the anisotropic case. Finally, functional approaches based on Taylor
series expansions are discussed, along with non-linear models, homogenization
techniques, and simple and dynamic mixed models.

* ® He worked as a postdoctoral student with Einstein at Princeton.
S M. Morkovin, in Mécanique de la Turbulence, A. Favre et a). (eds.), CNRS,
pp- 367-380 (1962).
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Pierre Sagaut also discusses the importance of numerical errors, and pro-
poses a very interesting review of the different wall models in the boundary
layers. The last chapter gives a few examples of applications carried out at
ONERA and a few other French laboratories. These examples are well chosen
in order of increasing complexity: isotropic turbulence, with the non-linear
condensation of vorticity into the “worms” vortices discovered by Siggia”;
planar Poiseuille flow with ejection of “hairpin” vortices above low-speed
streaks; the round jet and its alternate pairing of vortex rings; and, finally,
the backward-facing step, the unavoidable test case of computational fluid
dynamics. Also on the menu: beautifu] visualizations of the separation behind
a wing at high incidence, with the shedding of superb longitudinal vortices.
Completing the work are two appendices on the statistical and spectral ana-
lysis of turbulence, as well as isotropic and anisotropic EDQNM modeling.

A bold explorer, Pierre Sagaut had the daring to plunge into the jungle
of multiple modern techniques of large-scale simulation of turbulence. He
came back from his trek with an extremely complete synthesis of all the
models, giving us a very complete handbook that novices can use to start off
on this enthralling adventure, while specialists can discover models different
from those they use every day. Introduction to Large-Eddy Simulation is a
thrilling work in a somewhat austere wrapping. I very warmly recommend
it to the broad public of postgraduate students, researchers, and engineers
interested in fluid mechanics and its applications in numerous fields such as
aerodynamics, combustion, energetics, and the environment.

Grenoble, March 2000 Marcel Lesieur

" ED. Siggia, J. Flu'  fech., 107, pp. 375-406 (1981).
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Foreword

Still today, turbulence in fluids is considered as one of the most difficult
problems of modern physics. Yet we are quite far from the complexity of
microscopic molecular physics, since we only deal with Newtonian mechanics
laws applied to a continuum, in which the effect of molecular fluctuations
has been smoothed out and is represented by molecular-viscosity coefficients.
Such a system has a dual behaviour of determinism in the Laplacian sense,
and extreme sensitivity to initial conditions because of its very strong non-
linear character. One does not know, for instance, how to predict the critical
Reynolds number of transition to turbulence in a pipe, nor how to compute
precisely the drag of a car or an aircraft, even with today’s largest computers.

We know, since the meteorologist Richardson,! numerical schemes allow-
ing us to solve in a deterministic manner the equations of motion, starting
with a given initial state and with prescribed boundary conditions. They
are based on momentum and energy balances. However, such a resolution
requires formidable computing power, and is only possible for low Reynolds

" numbers. These Direct-Numerical Simulations may involve calculating the

interaction of several million interacting sites. Generally, industrial, natural,
or experimental configurations involve Reynolds numbers that are far too
large to allow direct simulations,? and the only possibility then is Large-
Eddy Simulation, where the small-scale turbulent fluctuations are themselves
smoothed out and modelled via eddy-viscosity and diffusivity assumptions.
The history of large-eddy simulation began in the 1960s with the famous
Smagorinsky model. Smagorinsky, also a meteorologist, wanted to represent
the effects upon large synoptic quasi-two-dimensional atmospheric or oceanic
motions? of a three-dimensional subgrid turbulence cascading toward small
scales according to mechanisms described by Richardson in 1926 and formal-
ized by the famous mathematician Kolmogorov in 1941. It is interesting to
note that Smagorinsky’s model was a total failure as far as the atmosphere

! 1, F. Richardson, Weather Prediction by Numerical Process, Cambridge Univer-
sity Press (1922).

2 More than 10*® modes should be necessary for a supersonic-plane wing!

3 Qubject to vigorous in;/erse-energy cascades.

4 1,.F. Richardson, Proc. Roy. Soc. London, Ser A, 110, pp. 709-737 (1926); A.
Kolmogorov, Dokl. Akad. Nauk SSSR, 30, pp. 301-305 (1941).



Preface

While giving lectures dealing with Large-Eddy Simulation (LES) to students
or senior scientists, I have found difficulties indicating published references
which can serve as general and complete introductions to this technique.

I have tried therefore to write a textbook which can be used by students
or researchers showing theoretical and practical aspects of the Large-Eddy
Simulation technique, with the purpose of presenting the main theoretical
problems and ways of modeling. It assumes that the reader possesses a basic
knowledge of fluid mechanics and applied mathematics.

Introducing Large-Eddy Simulation is not an easy task, since no unified
and universally accepted theoretical framework exists for it. It should be
remembered that the first LES computations were carried out in the early
1960s, but the first rigorous derivation of the LES governing equations in
general coordinates was published in 1995! Many reasons can be invoked to
explain this lack of a unified framework. Among them, the fact that LES
stands at the crossroads of physical modeling and numerical analysis is a
major point, and only a few really successful interactions between physicists,
mathematicians and practitioners have been registered over the past thirty
years, each community sticking to its own language and center of interest.
Each of these three communities, though producing very interesting work,
has not yet provided a complete theoretical framework for LES by its own
means. I have tried to gather these different contributions in this book, in
an understandable form for readers having a basic background in applied
mathematics,

Another difficulty is the very large number of existing physical models,
referred to as subgrid models. Most of them are only used by their creators,
and appear in a very small number of publications. I made the choice to
present a very large number of models, in order to give the reader a good
overview of the ways explored. The distinction between functional and struc-
tural models is made in this book, in order to provide a general classification;
- this was necessary in order to produce an integrated presentation.

In order to provide a useful synthesis of forty years of LES development, I
had to make several choices. Firstly, the subject is restricted to incompressible
flows, as the theoretical background for compressible flow is less evolved.
Secondly, it was necessary to make a unified presentation of a large number
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of works issued from many research groups, and very often I have had to
change the original proof and to reduce it. I hope that the authors will not
feel betrayed by the present work. Thirdly, several thousand journal articles
and communications dealing with LES can be found, and I had to make a
selection. T have deliberately chosen to present a large number of theoretical
approaches and physical models to give the reader the most general view of
what has been done in each field. I think that the most important contri-
butions are presented in this book, but I am sure that many new physical
models and results dealing with theoretical aspects will appear in the near
future.

A typical question of people who are discovering LES is “what is the best
model for LES?”. I have to say that I am convinced that this question cannot
be answered nowadays, because no extensive comparisons have been carried
out, and I am not even sure that the answer exists, because people do not
agree on the criterion to use to define the “best” model. As a consequence, 1
did not try to rank the model, but gave very generally agreed conclusions on
the model efficiency.

A very important point when dealing with LES is the numerical algorithm
used to solve the governing equations. It has always been recognized that
numerical errors could affect the quality of the solution, but new emphasis
has been put on this subject during the last decade, and it seems that things
are just beginning. This point appeared as a real problem to me when writing
this book, because many conclusions are still controversial (e.g. the possibility
of using a second-order accurate numerical scheme or an artificial diffusion).
So I chose to mention the problems and the different existing points of view,
but avoided writing a part dealing entirely with numerical discretization and
time integration, discretization errors, etc. This would have required writing
a companion book on numerical methods, and that was beyond the scope of
the present work. Many good textbooks on that subject already exist, and
the reader should refer to them.

Another point is that the analysis of, the coupling of LES with typical
pumerical techniques which should greatly increase the range of applications,
such as Arbitrary Lagrangian—Eulerian methods, Adaptive Mesh-Refinement
or embedded grid techniques, is still to be developed.

I am indebted to a large number of people, but I would like to express
special thanks to Dr. P. Le Quére, Prof. O. Daube, who gave me the op-
portunity to write my first manuscript on LES, and to Prof. J.M. Ghidaglia
who offered me the possiblity of publishing the first version of this book (in
French). T would also like to thank ONERA for helping me to write this new,
augmented and translated version of the book. Mrs. J. Ryan is gratefully
acknowledged for her help in writing the English version.

Paris, September 2000 Pierre Sagaut
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1. Introduction

1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the study of fluids in flow by numer-
ical simulation, and is a field advancing by leaps and bounds. The basic idea
is to use appropriate algorithms to find solutions to the equations describing
the fluid motion. :

Numerical simulations are used for two types of purposes.

The first is to accompany research of a fundamental kind. By describing
the basic physical mechanisms governing fluid dynamics better, numerical
simulation helps us understand, model, and later control these mechanisms.
This kind of study requires that the numerical simulation produce data of
very high accuracy, which implies that the physical model chosen to represent
the behavior of the fluid must be pertinent and that the algorithms used,
and the way they are used by the computer system, must introduce no more
than a low level of ertor. The quality of the data generated by the numerical
simulation also depends on the level of resolution chosen. For the best possible
precision, the simulation has to take into account all the space-time scales
affecting the flow dynamics. When the range of scales is very large, as it is
in turbulent flows, for example, the problem becomes a stiff one, in the sense
that the ratio between the largest and smallest scales becomes very large.

Numerical simulation is also used for another purpose: engineering anal-
yses, where flow characteristics need to be predicted in equipment design
phase. Here, the goal is no longer to produce data for analyzing the flow
dynamics itself, but rather to predict certain of the flow characteristics or,
more precisely, the values of physical parameters that depend on the flow,
such as the stresses exerted on an immersed body, the production and prop-
agation of acoustic waves, or the mixing of chemical species. The purpose
is to reduce the cost and time needed to develop a prototype. The desired
predictions may be either of the mean values of these parameters or their
extremes. If the former, the characteristics of the system’s normal operating
regime are determined, such as the fuel an aircraft will consume per unit
of time in cruising flight. The question of study here is mainly the system’s
performance. When extreme parameter values are-desired, the question is
rather the system’s characteristics in situations that have a little probability
of ever existing, i.e. in the presence of rare or critical phenomena, such as
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rotating stall in aeronautical engines. Studies like this concern system safety
at operating points far from the cruising regime for which they were designed.

The constraints on the quality of representation of the physical phenom-
ena differ here from what is required in fundamental studies, because what
is wanted now is evidence that certain phenomena exist, rather than all the
physical mechanisms at play. In theory, then, the description does not have
to be as detailed as it does for fundamental studies. However, it goes without
saying that the quality of the prediction improves with the richness of the
physical model.

The various levels of approximation going into the physical model are
discussed in the following. :

1.2 Levels of Approximation: General

A mathematical model for describing a physical system cannot be defined
before we have determined the level of approzimation that will be needed for
obtaining the required precision on a fixed set of parameters (see [136] for a
fuller discussion). This set of parameters, associated with the other variables
characterizing the evolution of the model, contain the necessary information
for describing the system completely.

The first decision that is made concerns the scale of reality considered.
That is, physical reality can be described at several levels: in terms of par-
ticle physics, atomic physics, or micro- and macroscopic descriptions of phe-
nomena. This latter level is the one used by classical mechanics, especially
continuum mechanics, which will serve as the framework for the explanations

" given here.

A system description at a given scale can be seen as a statistical averaging
of the detailed descriptions obtained at the previous (lower) level of descrip-
tion. In fluid mechanics, which is essentially the study of systems consisting
of a great many interacting elements, the choice of a level of description,
and thus a level of averaging, is fundamental. A description at the molecular
level would call for a definition of a discrete system governed by Boltzmann
equations, whereas the continuum paradigm would be called for in a macro-
scopic description corresponding to a scale of representation larger than the
mean free path of the molecules. The system will then be governed by the
Navier-Stokes equations, if the fluid is Newtonian.

After deciding on a level of reality, several other levels of approximation
have to be considered in order to obtain the desired information concerning
the evolution of the system:

— Level of space-time resolution. This is a matter of determining the time and
space scales characteristic of the system evolution. The smallest pertinent
scale is taken as the resolution reference so as to capture.2ll the dynamic
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mechanisms. The system spatial dimension (zero to three dimensions) has
to be determined in addition to this.

— Level of dynamic description. Here we determine the various forces ex-
erted on the system components, and their relative importance. In the
continuum mechanics framework, the most complete model is that of the
Navier-Stokes equations, complemented by empirical laws for describing
the dependency of the diffusion coefficients as a function of the other
variables, and the state law. This can first be simplified by considering that
the elliptic character of the flow is due only to the pressure, while the other
variables are considered to be parabolic, and we then refer to the parabolic
Navier—Stokes equations. Other possible simplifications are, for example,
Stokes equations, which account only for the pressure and diffusion effects,
and the Euler equations, which neglect the viscous mechanisms.

The different choices made at each of these levels make it possible to
develop a mathematical model for describing the physical system. In all of
the following, we restrict ourselves to the case of a Newtonian fluid of a single
species, of constant volume, isothermal, and isochoric in the absence of any
external forces. The mathematical model consists of the unsteady Navier—
Stokes equations. The numerical simulation then consists in finding solutions
of these equations using algorithms for Partial Differential Equations. Be-
cause of the way computers are structured, the numerical data thus generated
is a discrete set of degrees of freedom; and of finite dimensions. We therefore
assume that the behavior of the discrete dynamical system represented by
the numerical result will approximate that of the exact, continuous solution
of the Navier-Stokes equations with adequate accuracy.

1.3 Statement of the Scale Separation Problem

Solving the unsteady Navier-Stokes equations implies that we must take into
account all the space-time scales of the solution if we want to have a result
of maximum quality. The discretization has to be fine enough to represent
all these scales numerically. That is, the simulation is discretized in steps
Az in space and At in time that must be smaller, respectively, than the
characteristic length and the characteristic time associated with the smallest
dynamically active scale of the exact solution. This is equivalent to saying
that the space-time resolution scale of the numerical result must be at least as
fine as that of the continuous problem. This solution criterion may turn out
to be extremely constrictive when the solution to the exact problem contains
scales of very different sizes, which is the case for turbulent flows.

This is illustrated by taking the case of the simplest turbulent flow, <.e.
one that is statistically homogeneous and isotropic (see Appendix A for a
more precise definition). For this flow, the ratio between the characteristic
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length of the most energetic scale, L, and that of the smallest dynamically
active scale, 1, is evaluated by the relation:

L =0 (Re3/4) , (1.1)
n

in which Re is the Reynolds number, which is a measure of the ratio of
the forces of inertia and the molecular viscosity effect, v. We therefore need
O (Reg/ 4) degrees of freedom in order to be able to represent all the scales
in a cubic volume of edge L. The ratio of characteristic times also varies as
0 (Re3/ 4). So in order to calculate the evolution of the solution in a volume
L? for a duration equal to the characteristic time of the most energetic scale,
we have to solve the Navier—Stokes equations numerically O (Re3) times!

This type of computation for large Reynolds numbers (applications in
the aeronautical field deal with Reynolds numbers of as much as 10%) re-
quires computer resources very much greafer than currently available super-
computer capacities, and is therefore not practicable.

In order to be able to compute the solution, we need to reduce the number
of operations, so we no longer solve the dynamics of all the scales of the
exact solution directly. To do this, we have to introduce new, coarser level
of description of the fluid system. This comes down to picking out certain
scales that will be represented directly in the simulation while others will not
be. The non-linearity of the Navier-Stokes equations reflects the dynamic
coupling that exists among all the scales of the solution, which implies that
these scales cannot be calculated independently of each other. So if we want a
quality representation of the scales that are resolved, their interactions with
the scales that are not have to be considered in the simulation. This is done
by introducing an additional term in the equations governing the evolution of
the resolved scales, to model these interactions. Since these terms represent
the action of a large number of other scales with those that are resolved
(without which there would be no effective gain), they reflect only the global
or average action of these scales. They are therefore only statistical models: an
individual deterministic representation of the inter-scale interactions would
be equivalent to a direct numerical simulation.

Such modeling offers a gain only to the extent that it is universal, i.e.
if it can be used in cases other than the one for which it is established.
This means there exists a certain universality in the dynamic interactions
the models reflect. This universality of the assumptions and models will be
discusséd all through the text.

1.4 Usual Levels of Approximation

There are several common ways of reducing the number of degrees of freedom
in the numerical solution:

1.4 Usual Levels of Approximation 5

— By calculating the statistical average of the solution directly. This is called
the Reynolds Averaged Numerical Simulation (RANS)[179], which is used
mostly for engineering calculations. The exact solution u splits into the
sum of its statistical average (u) and a fluctuation o’ (see Appendix A):

u(x,t) = (u(x,t)) + u'(x,t)

This splitting, or “decomposition”, is illustrated by Fig. 1.1. The fluc-
tuation u’ is not represented directly by the numerical simulation, and
is included only by way of a turbulence model. The statistical averaging
operation is in practice often associated with a time averaging:

T
(u(,1)) ~ 60 = tim /O u(x, £)dt

The mathematical model is then that of the steady Navier-Stokes equa-
tions. This averaging operation makes it possible to reduce the number of
scales in the solution considerably, and therefore the number of degrees
of freedom of the discrete system. The statistical character of the solu-
tion prevents a fine description of the physical mechanisms, so that this
approach is not usable for studies of a fundamental character, especially
so when the statistical average is combined with a time average. Nor is
it possible to isolate rare events. On the other hand, it is an appropriate
approach for analyzing performance as long as the turbulence models are
able to reflect the existence of the turbulent Auctuation u’ effectively.

E) E(k) E(k)
= +
k k k

TOTAL RESOLVED MODELED

Fig. 1.1. Decomposition of the energy spectrum of the solution associated with
the Reynolds Averaged Numerical Simulation (symbolic representation).

— By calculating directly only certain low-frequency modes in time (of the
order of a few hundred hertz) and the average field. This approach goes
by a number of names: Unsteady Reynolds Averaged Numerical Simula-
tion (URANS) , Semi-Deterministic Simulation (SDS), Very Large-Eddy
Simulation (VLES), and sometimes Coherent Structure Capturing (CSC)
[16,331]. The field u appears here as the sum of three contributing terms:

U(X, t) = ﬁ(X) + {u(x, t))c -+ u’(x, t).

The first term is the time average of the exact solution, the second its
conditional statistical average, and the third the turbulent fluctuation.
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This decomposition is illustrated in Fig. 1.2. The conditional average is
associated with a predefined class of events. When these events occur at &
set time period, this is a phase average. The (u(x,t)). term is interpreted
as the contribution of the coherent modes to the flow dynamics, while the
o term, on the other hand, is supposed to represent the random part
of the turbulence. The variable described by the mathematical model is
now the sum u(x) + (u(x,t))c, with the random part being represented
by a turbulence model. It should be noted that, in the case where there
exists a deterministic low-frequency forcing of the solution, the conditional
average is conventionally interpreted as a phase average of the solution, for
a frequency equal to that of the forcing term; but if this does not exist,
the interpretation of the results is still open to debate. Since this is an
unsteady approach, it contains more information than the previous one;
but it still precludes a deterministic description of a particular event. It is
of use for analyzing the performance characteristics of systems in which the
unsteady character is forced by some external action (such as periodically
pulsed flows).

E(k) E(k) E(k)

= -

. k k
TOTAL RESOLVED MODELED
Fig. 1.2. Decomposition of the energy spectrum of the solution agsociated with
the Unsteady Reynolds Averaged Numerical Simulation approach, when a pre-
dominant frequency exists (symbolic representation).

By projecting the solution on the ad hoc function basis and retaining only a
minimum number of modes, to get a dynamical system with fewer degrees
of freedom. The idea here is to find an optimum decomposition base for
representing the phenomenon, in order to minimize the number of degrees
of freedom in the discrete dynamical system. There is no averaging done
here, so the space-time and dynamics resolution of the numerical model is
still as fine as that of the continuum model, but is now optimized. Several
approaches are encountered in practice.

The first is to use standard basis function (Fourier modes in the spectral
space or polynomials in the physical space, for example) and distribute
the degrees of freedom as best possible in space and time to minimize the
number of them, i.e. adapt the space-time resolution of the simulation to
the nature of the solution. We thus adapt the topology of the discrete

1.5 Large-Eddy Simulation 7

dynamical system to that of the exact solution. This approach results in
the use of self-adapting grids and time steps in the physical space. It is not
associated with an operation to reduce the complexity by switching to a
higher level of statistical description of the system. It leads to a much less
reduction of the discrete system than those techniques based on statistical
averaging, and is limited by the complexity of the continuous solution.
Another approach is to use optimal basis functions, a small number of
which will suffice for representing the flow dynamics. The problem is then
to determine what these base functions are. One example is the Proper
Orthogonal Decomposition (POD) mode basis, which is optimum for rep-
resenting kinetic energy (see [20] for a survey). This technique allows very
high data compression, and generates a dynamical system of very small
dimensions (a few dozen degrees of freedom at most, in practice). The
approach is very seldom used because it requires very complete information
conceriiing the solution in order to be able to determine the base functions.
The various approaches above all return complete information concerning
the solutions of the exact problem, so they are perfectly suited to studies
of a fundamental nature. They may not, on. the other hand, be optimal in
terms of reducing the complexity for certain engineering analyses that do
not require such complete data.

— By calculating only the low-frequency modes in space directly. This is
what is done in Large-Eddy Simulation (LES). It is this approach that
is discussed in the following. It is illustrated in Fig. 1.3.

E(k) E(k) E(k)

k

: k
TOTAL RESOLVED MODELED

Fig. 1.3. Decomposition of the energy spectrum in the solution associated with
large-eddy simulation (symbolic representation).

1.5 Large-Eddy Simulation

The scale selection that the large-eddy simulation technique is based on
(97,190, 220, 280, 285] is a separation between large and small scales. In order
to define these two categories, a reference or cutoff length first has to be
determined. Those scales that are of a characteristic size greater than the
cutoff length are called large or resolved scales, and others are called small
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or subgrid scales. The latter are included by way of a statistical model called
a subgrid model. It should be remembered that this separation between
different scales is not associated with a statistical averaging operation, as
are some of the techniques mentioned above.

On the mathematical level, this scale separation is formalized in the form
of a frequency low-pass filter, discussed in Chap. 2. The application of this
filter to the Navier-Stokes equations, described in Chap. 3, yields the con-
stitutive mathematical model for the large-eddy simulation. The convection
term, because it is non-linear, has to be decomposed. Part of the resultant
terms can be calculated directly from the resolved scales, the rest have to be
modeled.

Two modeling approaches are spoken of here: functional modeling, based
on representing kinetic energy transfers (covered in Chaps. 4 and 5), and
structural modeling, which aims to reproduce the eigenvectors of the statis-
tical correlation tensors of the subgrid modes (presented in Chap. 6). The
basic assumptions and the subgrid models corresponding to each of these
approaches are presented.

Chapter 7 is devoted to the theoretical problems arising from the effects
of the numerical method used in the simulation. The representation of the
numerical error in the form of an additional filter is introduced, along with
the problem of the relative weight of the various filters used in the numerical
simulation. Question concerning the analysis and validation of the large-eddy
simulation calculations are dealt with in Chap. 8.

The boundary conditions used for large-eddy simulation are discussed in
Chap. 9, where the main cases treated are solid walls and inflow conditions.

The practical aspects concerning the implementation of subgrid models
are described in Chap. 10. Lastly, the discussion is illustrated by exam-
ples of large-eddy simulation applications for different categories of flows,
in Chap. 11.

2. Formal Introduction to Scale Separation:
Band-Pass Filtering

The idea of scale separation introduced in the preceding chapter will now be
formalized on the mathematical level, to show how to handle the equations
and derive the subgrid models. The representation of the filtering as a convo-
lution product is first presented in the ideal case of a filter of uniform cutoff
length in space over an infinite domain. Extensions to the cases of a bounded
domain and a filter of variable cutoff length are then discussed.

2.1 Definition and Properties of the Filter
in the Homogeneous Case

The framework is restricted here to the case of homogeneous isotropic filters,
for the sake of easier analysis, and to allow a better understanding of the
physics of the phenomena. The filter considered is isotropic. This means that
its properties are independent, of the position and orientation of the reference
system in space, which implies that it is applied to an unbounded domain
and that the cutoff scale is constant and identical in all directions of space.
This is the framework in which subgrid modeling developed historically. The
extension to anisotropic and inhomogeneous? filters, which researchers have
only more recently begun to look into, is described in Sect. 2.2.

2.1.1 Definition

Scales are separated by applying a scale high-pass filter, i.e. low-pass in
frequency, to the exact solution. This filtering is represented mathematically
in physical space as a convolution product. The resolved part ¢(x,t) of a
space-time variable ¢(x, t) is defined formally by the relation: ‘

_ +oo +o0
B(x,t) = /_ HE)Cx— &t —thddde | (21)

[e9] -

! That is, whose characteristics, such as the mathematical form or cutoff frequency,
are not invariant by translation or rotation of the reference system in which they
are defined.
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in which the convolution kernel G is characteristic of El_le filter used, which is
associated with the cutoff scales in space and time, A and 7., respectively.
This relation is denoted symbolically by:

d=Gx¢ . ' (2.2)

The dual definition in the Fourier space is obtained by multiplying the
spectrum ¢(k,w) of ¢(x,t) by the spectrum G(k,w) of the kernel G(x,1):

o(k,w) = ¢(k,w)G(k,w) , (2.3)
or, in symbolic form:

where k and w are the spatial wave number and time frequency, respectively.
The function G is the transfer function associated with the kernel G. The
spatial cutoff length A is associated with the cutoff wave number k. and
time 7., with the cutoff frequency w.. The unresolved part of ¢(x, ), denoted

@' (x,t), is defined operationally as:
¢ (x,t) = ¢(x,1) — d(x,1) (2.5)

-+o0 +o00
g0 - [ [ den)c- gt - talde, (26)

or:
d=1-G)x¢ . 2.7
The corresponding form in spectral space is:
P lk,w) = Bl w) — dkw) = (1= Cllw) Blow) ,  (28)
i.€.
§=0-G9 (2.9)

2.1.2 Fundamental Properties

In order to be able to manipulate the Navier—Stokes equations after applying
a filter, we require that the filter verify the three following properties:

1. Conservation of constants

+o0 +o0
a=a<= / G(¢,t)dedt' =1 (2.10)
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2. Linearity

p+=0¢+9¢ . (2.11)

This property is automatically satisfied, since the product of convolution
verifies it independently of the characteristics of the kernel G.
3. Commutation with derivation

99 _ 99

s~ 0s’

Introducing the commutator [f, g] of two operators f and g applied to the
dummy variable ¢

s=x,t . (2.12)

[f:916 = Fog(¢) —go f(8) = flg(e)) —9(F(8) (2.13)
the relation (2.12) can be re-written symbolically
g
[G*, 5;] =0 . (2.14)

The commutator defined by relation (2.13) has the following
properties?:

[f,9]=~lg,f] Skew-symmetry , (2.15)
[fogah]:[f7h]°g+f°[gah] ) (2'16)
[f, g, B]] + g, [k, Il + [h, [f, 9]l =0 Jacobi’s identity . (2.17)

The filters that verify these three properties are not, in the general case,
Reynolds operators (see Appendix A), i.e.

B=GxGrp=C>x¢p#=Cx¢ , (2.18)
¢ =Gx(1-G)x¢p#0 (2.19)
which is equivalent to saying that G is not a projector (excluding the trivial
case of the identity application). Let us recall that an application P is defined

as being a projector if Po P = P. Such an application is idempotent because
it verifies the relation

P"=PoPo..oP=P, ¥neIN" . (2.20)
R ——

n times

2 In the linear case, the commutator satisfies all the properties of the Poisson-

bracket operator, ~defined in classical mechanics.
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When G is not a projector, the filtering can be interpreted as a change of
variable, and can be inverted, so there is no loss of information3 [112]. The
kernel of the application is reduced to the null element, i.e. ker(G) = {0}.

If the filter is a Reynolds operator, we get

G*=1 , (2.21)

or, remembering the property of conservation of constants:

G=1 . (2.22)

In the spectral space, the idempotency property implies that the transfer
function takes the following form:

Ok, w) = {(1) Vk, Vo . (2.23)

The convolution kernel G therefore takes the form of a sum of Dirac
functions and Heaviside functions associated with non-intersecting domains.
The conservation of constants implies that G is 1 for the modes that are
constant in space and time. The application can no longer be inverted be-
cause its kernel ker(G) = {¢'} is no longer reduced to the zero element; and
consequently, the filtering induces an irremediable loss of information.

A filter is said to be positive if:

G(x,t) > 0,Vxand V¢t . (2.24)

2.1.3 Characterization of Different Approximations

The various methods mentioned in the previous section for reducing the
number of degrees of freedom will now be explained. We now assume that the
space-time convolution kernel G(x—§&,¢—#') in IR* is obtained by tensolrizing
mono-dimensional kernels:

Gx—&t—t)=Gx - &Gt —t') = Gyt —t) J] Gili ~&) . (2.25)

1=1,3

The Reynolds time average over a time interval T is found by taking:

Gi(t—t) = %; Gi(zi — &) =6(z: - &), i=1,2,3 , (2.26)

3 The reduction of the number of degrees of freedom comes from the fact that the

new variable, i.e. the filtered variable, is more regular than the original one in

the sense that it contains fewer high frequencies. Its characteristic scale in space

is therefore larger, which makes it possible to use a coarser solution to describe
it, and therefore fewer degrees of freedom.
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in which § is a Dirac function and Hr the Heaviside function corresponding
to the interval chosen. This average is extended to the ith direction of space
by letting G(x; — &) = Hy /L, in which L is the desired integration interval.

The phase average corresponding to the frequency w, is obtained by let-
ting:

Ci(w) = d(w —we), Gilm:i &) =6(wi - &), i=1,2,3 .  (2.27)

In all of the following, only the large-eddy simulation technique based on
spatial filtering will be described, because it is the only approach actually
used, with very rare exceptions [71,72]. This is expressed by:

Gt =ty =6(t—t) . (2.28)

Different forms of the kernel Gi(z; — &) in common use are described
in the following section. It should nonetheless be noted that, when a spatial
filtering is imposed, it automatically induces an implicit time filtering, since
the dynamics of the Navier—Stokes equations makes it possible to associate
a characteristic time with each characteristic length scale?. We nonetheless
assume that the description with a spatial filtering along is pertinent.

2.1.4 Differential Filters

A subset of the filters defined in the previous section is the set of differen-
tial filters [111,112,114,117]. These filters are such that the kernel G is the
Green’s function associated to an inverse linear differential operator F:

4 This time scale is evaluated as follows. Let A be the cutoff length associated with

the filter, and kc = 7/A the associated wave number. Let E(k) be the energy
spectrum of the exact solution (see Appendix A for a definition). The kinetic
energy associated with the wave number k¢ is kcE(ke). The velocity scale v
associated with this same wave number is estimated as:

ve = ke E(ke)

The characteristic time t. associated with the length A is calculated by di-
mensional arguments as follows:

tc F: Z/'Uc

"The corresponding frequency is we = 2m [tc. The physical analysis shows that
for spectrum forms E(k) considered in the large-eddy simulation framework, v is
a monoctonic decreasing function of k¢ (resp. monotonic increasing function of A),

.80 that wc is a monotonic increasing function of k¢ (resp. monotonic decreasing -
function of A4). Suppressing the spatial scales corresponding to wave numbers
higher than k. induces the disappearance of the time frequencies higher than we.
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¢ = F(Gx¢)=F($)

o 0 09— 0%
= ¢+0(9t +Ala$l +Alm(9£€lm +o (229)

where 6 and ZA; are some time and space scales, respectively. Differential filters
can be grouped into several classes: elliptic, parabolic or hyperbolic filters. In
the framework of a generalized space-time filtering, Germano [111,112,114]
recommends using a parabolic or hyperbolic time filter and an elliptic space
filter, for reasons of physical consistency with the nature of the Navier-Stokes
equations. It is recalled that a filter is said to be elliptic.(resp. parabolic or
hyperbolic) if F'is an elliptic (resp. parabolic, hyperbolic) operator. Examples
are given below [117].

Time Low-Pass Filter. A first example is the time low-pass filter. The
associated inverse differential relation is :

- 0
¢:¢+06—(f . (2.30)
The corresponding convolution filter is:
t )
F=1 / (') exp (-Li> i (2.31)
0 J oo 6

It is easily seen that this filter commutes with time and space deriva-
tives. This filter is causal, because it incorporates no future information, and
therefore is applicable to real-time or post-processing of the data.

Elliptic Filter. An elliptic filter is obtained by taking:
- —20%
qﬁ—qb—A%—? . (2.32)

It corresponds to a second-order elliptic operator, which depends only on

space. The convolutional integral form is:

— 1 t - :
b= — 96D o (—l—m—_—ﬁ> . (2.33)
dr A |z — ¢ - A
This filter satisfies the three previously mentionned basic properties.
Parabolic Filter. A parabolic filter is obtained taking

= 8¢ 2 8%
¢—¢+GE—A5w—? , (2.34)
yielding
— e ! P t) (@920t
- (am)3/24° /,oo/ R R Wy TS S “

(2.35)

It is easily verified that the parabolic filter satistifles the three required
properties.
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Cor.lvective and Lagrangian Filters. A convective filter is obtained by
adding a convective part to the parabolic filter, leading to:

- 09 9 —20%

=¢p+0—+0V,— -A" —
= Vi A T
where V is an arbitrary velocity field. This filter is linear and constant
preserving, but commutes with derivatives if and only if V is uniform. A
Lagrangian filter is obtained when V is taken equal to u, the velocity field.

In this last case, the commutation property is obviously lost.

(2.36)

2.1.5 Three Classical Filters for Large-Eddy Simulation

Three convolution filters are ordinarily used for performing the spatial scale

separation. For a cutoff length A, in the mono-dimensional case, these are
written: :

— Box or top-hat filter:

1 A
= if Jx—¢l <+
Gla—§=1¢ 4 2 (2.37)
0 otherwise
G(k) = ——Sink(%%m (2.38)

The convolution kernel G and the transfer function G are represented in
Figs. 2.1 and 2.2, respectively.
— Gaussian filter:

Gz —¢) = <%)1/2 exp (‘—7'%—212) , (2.39)

—2
G(k) = exp <_§7’“2> , (2.40)

in which +y is a constant generally taken to be equal to 6. The convolution
kernel G and the transfer function G are represented in Figs. 2.3 and 2.4,
respectively.

— Spectral or sharp cutoff filter:

e - =)
R 1 if k] < ke

G(k) = , . (2.42)
0 otherwise

, avec ke = (2.41)

T
_A“ )

The convolution kernel G and the transfer function G are represented in
Figs. 2.5 and 2.6, pectively.
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Fig. 2.1. Top-hat filter. Convolution kernel in the physical space normalized by 2.
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1.4

2.2 Extension to the Inhomogeneous Case 19

AN

It is trivially verified that the first two filters are positive while the sharp
cutoff filter is not. The top-hat filter is local in the physical space (its support
is compact) and non-local in the Fourier space, inversely from the sharp cutoff
filter, which is local in the spectral space and non-local in the physical space.
As for the Gaussian filter, it is non-local both in the spectral and physical
spaces. Of all the filters presented, only the sharp cutoff has the property:

G-G..G=G"=G ,
N—_——
n times
and is therefore idempotent in the spectral space. Lastly, the top-hat and
Gaussian filters are said to be smooth because there is a frequency overlap
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Fig. 2.5. Sharp cutoff filter. Convolution kernel in the physical space.
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1 2.2 Extension to the Inhomogeneous Case

2.2.1 General

In the above explanations, it was assumed that the filter is homogeneous
and isotropic. These assumptions are at time too restrictive for the resulting
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conclusions to be usable. For example, the definition of bounded fluid domains
forbids the use of filters that are non-local in space, since these would no
longer be defined. The problem then arises of defining filters near the domain
boundaries. At the same time, there may be some advantage in varying the
filter cutoff length to adapt the structure of the solution better and thereby
ensure optimum gain in terms of reducing the number of degrees of freedom
in the system to be resolved. ‘

From relation (2.1), we get the following general form of the commutation
error for a convolution filter G(y, A(z,t)) on a domain  [105,121]:

Fig. 2.6. Sharp cutoff filter. Associated transfer function.
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[55, G*] ¢ = e (Gx )~ Gx % (2.43)

The first term of the right hand side of (2.43) can be expanded as
0 i} - .
i (G x) = 5 [ Glo—& B 0)0te e (2.44)
oG 9A —
~ (Bvo) 5o + [ Gta—e A 0006 om0
+G % g—: , , (2.45)

where n(£) is the outward unit normal vector to the boundary of 2, oQ,
yielding
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oz’

The first term appearing in the right hand side of relation (2.46) is due to
spatial variation of the filtering length, while a domain boundary generates
the second one. A similar development leads to:

[%,G*} ¢ = <g—% *¢> % . (2.47)

These error terms must be eliminated, or bounded, in order to be able to
define a controlled and consistent filtering process for large-eddy simulation.
This is done by deriving new filtering operators. Several alternatives to the
classical convolution products have been proposed, which are described in
the following.

) oG oA —
356 6= (55+6) Bt [ GlameBniote tmicris. @)

2.2.2 Non-uniform Filtering Over an Arbitrary Domain

This section presents the findings concerning the extension of the filtering to
the case where the filter cutoff length varies in space and where the domain
over which it applies is bounded or infinite.
New Definition of Filters and Properties: Mono-dimensional Case.
Alternative proposals in the homogeneous case. Ghosal and Moin [123] pro-
pose to define the filtering of a variable ¢(¢), defined over the interval
| — 00, +00|, as

- 1 +oo 6 -

$E)=Gx¢p= j/ G (—Z*> ¢(m)dn (2.48)

—00
© in which the cutoff length A is constant. The convolution kernel G is made
to verify the following four properties:

1. Symmetry

G(=§) =G . (2.49)
We note that this property was not explicitly required before, but that
it is verified by the three filters described in Sect. 2.1.5.
2. Conservation of constants

/+0<> aG(€)d¢, a = const. (2.50)

— 00
3. Fast decay. G(&) — 0 as |¢] — oo fast enough for all of its moments to
be finite, i.e.
+o0

G(E)E"dE < 00, Yn>0 . (2.51)

4. Quasi-local in physical space. G(€) is localized (in a sense to be specified)
in the interval [-1/2,1/2].
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Extension of the Top-Hat Filter to the Inhomogeneous Case: Prop-
erties. Considering definition (2.48), the top-hat filter (2.37) is expressed:

1 ifle] <L
0 otherwise

GRN

There are a number of ways of extending this filter to the inhomogeneous
case. The problem posed is strictly analogous to that of extending finite
volume type schemes to the case of inhomogeneous structured grids: the
control volumes can be defined directly on the computational grid or in
a reference space carrying a uniform grid, after a change of variable. Two
extensions of the box filter are discussed in the following, each based on a
different approach.

(2.52)

Direct extension. If the cutoff length varies in space, one solution is to say:

1 E+AL(8)
INGEYRGN AL

in which A (€) and A_(£) are positive functions and (A4 (&) +A_(8)) is the
cutoff length at point £, These different quantities are represented in Fig. 2.7.
If the domain is finite or semi- infinite, the functions A4 (€) and A_(€) must
decrease fast enough near the domain boundaries for the integration interval
[E—A_(&),¢+A, ()] to remain defined. The box filter is extended intuitively
here, as an average over the control cell [€~A_(£),+AL()]. This approach
is similar to the finite volume techniques based on control volumes defined
directly on the computational grid.

A©) A(®)

g

Fig. 2.7. Direct extension of the top-hat filter. Representation of the integration
cell at point €.

#(€) (2.53)

It is shown that this expression does not ensure the commutation property
with derivation in space. Relation (2.12) becomes (the dependency of the
functions A} and A_ as a function of € is not explicitly state, to streamline
the notation):

4], _ (d/de) (A + A,)-
%J¢“ Ata;

[G*,

1 dA+ dA_
(2.54)



22 2. Formal Introduction to Filtering

The amplitude of the error committed cannot be evaluated a priori, and
thus cannot be neglected. Also, when (2.53) is applied to the Navier-Stokes
equations, all the terms, including the linear ones, will introduce unknown
terms that will require a closure.

Extension by Variable Change. SOCF. To remedy this problem, a more
general alternative description than relation (2. 53) is proposed by Ghosal and
Moin [123]. This new definition consists of defining filters that commute at
the second order with the derivation in space (Second Order Commuting
Filter, or SOCF). This is based on a change of variable that allows the use of
a homogeneous filter. The function ¢ is assumed to be defined over a finite
or infinite interval [a,b]. Any regular monotonic function defined over this
interval can be related to a definite function over the interval [—oco, 4-00] by
performing the variable change:

§=f(z) , (2.55)

in which f is a strictly monotonic differentiable function such that:

fla) = —o0, f(b) =400 . (2.56)

The constant cutoff length A defined over the reference space [~00, +00]
is associated with the variable cutoff length &(x) over the starting interval by
the relation:

- A
o(z) =
f'(=)

In the case of & finite or semi-infinite domain, the function f’ takes infinite

values at the bounds and the convolution kernel becomes a Dirac function.

(2.57)

The filtering of a function ¥(z) is defined in the inhomogeneous case in three

steps:

. We perform the variable change z = f —1(¢), which leads to the definition

of the function ¢(¢) = p(f~1(£))-
9. The function ¢(¢) is then filtered by the usual homogeneous filter (2.48):

+oo _
===/ (L) owm - @)
3. TLe filtered quantity is then re-expressed in the original space:
P(x) = / <%~M> () f (w)dy . (2.59)
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”_["his new expression of the filter modifies the commutation error with the
spatial derivation. Using (2.58) and integrating by parts, we get:

G _ 1) o (L2 W) 4 )Lza
1 / ( 1y ))f @ Wy . (260)

The fast decay property of the kernel G makes it possible to cahcel the
first term of the rigth-hand side. The commutation error is:

onglo= % [¢ (2259 roww

ffde - em

In order to simplify this expression, we introduce a new variable ¢ such
that:

fly)=fl@)+4¢ . (2.62)

The variable y is then re-expressed as a series as a function of A:

Y =50(C) + By1(Q) + B y2(C) + - (2.63)

Then, combining relations (2.62) and (2.63), we get (the dependence of
the functions according to the variable z is not explicitly shown, to streamline
the notation):

—A—g—- A F¢
x + 7 o7 4+,

which allows us to re-write relation (2.61) as:

{G*, d%]qs: / ;wcv*(ow’(y(o) [1— rz) }d( (2.65)

(2.64)

()
= GA+GA +. (2.66)
in which the coeflicients C; and Cs are expressed as:
f”’lpl “+o0
¢ =T [ oou (2.67)

1,111 "1t "2 1t
0 = MLVEILW S [ g

277 (2.68)
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The symmetry property of the kernel G implies C; = 0, which ensures
that the filter commutation error with the spatial derivation is of the second
order as a function of the cutoff length A. The authors call this Second-Order
Commuting Filter (SOCF).

A study of the spectral distribution of the commutation error is available
in reference [123]. Rather than detailing this analysis here, only the major
results will be explained. Considering a function of the form:

P(z) =Pk, P2 =_1 , (2.69)

the two derivation operations are written:

R — )

= —ikyp, —

dz v dz

The commutation error can be measured by comparing the two wave
numbers k and k', the latter being such that iky) = ik/+p. The commutation

error is zero if k = /. Algebraic manipulations lead to the relation:

=ik . (2.70)

K —00

k f,2 400

+00 _
g / CG(C) sin(kAC/ f)dC
=1-iAL (2.71)

G(C) cos(kAC/ f')d¢

—c0
Using the modal decomposition (2.69), the commutation error can be
expressed in differential form. The calculations lead to:

"o__ d2_ _
{G*, %} ¢ = a<2>}f/~3-A2d—;f + O(KA)* (2.72)
—t o
= —a@7 (%) % + O, (2.73)

in which §(z) is the local cutoff length and o(?) the second-order moment of

G, i.e.

+oc0

o = / 2e(Ode (2.74)
—00

Van der Ven’s Filters. Commuting filters can be defined with the spatial

derivation at an order higher than 2, at least in the case of an infinite domain.

To obtain such filters, Van der Ven [330] proposes defining the filtering for

the case of a variable cutoff length §(z) by direct extension of the form (2.48):

=5 | e CHLCR (2.75)

2.2 Extension to the Inhomogeneous Case 25

The function G is assumed here to be class C?, symmetrical, and must
conserve the constants. Also, the function §(z) is also assumed to be class C.
This definition is achieved by linearizing the general formula (2.59) around =,
that is by letting ¢'(y) = ¢/(z) and ¢(z) — ¢(y) = ¢ (z)(z — y) and including
relation (2.57). This linearization operation is equivalent to considering that
the function ¢ is linear in a neighbourhood of z containing the support of
the convolution kernel. By introducing the variable change y = »—(8(z), the
corresponding commutation error is expressed:

(en ] 0= % [@@ +e s -cEn . @

To increase the order of the commutation error, we look for functions G
that are solutions to the equation

G+(G =aG™, n>1 | (2.77)

in which a is a real and G(™ designates the n-th derivative of the kernel G.
For such functions, the commutation error becomes:

ez @ = 50 6 (&) o - GEpac e
= a8 (z)3(x)" g™ (z) , (2.79)

and is thus formally of order n — 1. Simple analysis shows that the Fourier
transform G of the solution to problem (2.77) verifying the constant conser-

_vation property is of the form:

G(k) = exp (%k") : (2.80)
The symmetry property of G implies that n = 2m is even, and therefore: »
A —a(=1)™ ,
k)= — k™ . 2.81
Gk = exp (~° k) (2.81)

The fast decay property is recovered for a = b(~1)™,b > 0. It can be seen
that the Gaussian filter then occurs again by letting m = 1. It is important
to note that this analysis is valid only for infinite domains, because when the
bounds of the fluid domain are included they bring out additional error terms
with which it is no longer possible to be sure of the order of the commutation
error. The transfer function obtained for various values of the parameter m
is represented in Fig. 2.8. ’
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Fig. 2.8. High-order commuting filter. Graph of the associated transfer function
for different values of the parameter m.

High-Order Commuting Filters. Van der Ven’s analysis has been gen-
eralized by Vasilyev et al. [332] so as to contain previous works (SOCF and
Van der Ven’s filters) as special cases. As for SOCF, the filtering process is
defined thanks to the use of a reference space. We now consider that the
physical domain [a,b] is mapped into the domain [a, 8]. Ghosal and Moin
used @ = —oco and B = +o00. The correspondances between the two domains
are summarized in Table 2.1.

Table 2.1. Correspondances for Vasilyev’s high-order commuting filters.

Domain [a,b] [, O]

Coordinate = = f1(¢) £=f(z)

Filter length  §(z) = A/f'(z) A

Function ¥(x) P(&) =v(fHE)

Considering this new mapping, relation (2.58) is transformed as

w0 -5 [ o (S2) eman (252

and using the change of variables (2.62), we get
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E—a
A
B

3 = G Q) 6 — DO (2.83)

The next step consists in performing a Taylor expansion of B(¢ — AC) in
powers of A:

se-a0= Y Vel (280

k=0,+00

Substituting (2.84) into- (2.83), we get

a0=- Y Sawweile (285)

k=0,+00
where the kth moment of the filter kernel is now defined as

-

W)= [ e . (2.86)

B

Using the relation (2.85), the space derivative of the filtered variable
expressed in the physical space can be evaluated as follows:

@) = F@F© (2.87)
" 1 /da® ok KL
@ 3 C03 (L @5 +a (O 5rt©)).
| (2.88)

A similar procedure is used to evaluate the second part of the commuta-
tion error. Using (2.87) and the same change of variables, we get:

Bor=2 [ o5 Loraom . e
with
-1
i} (1 a0\ O
f'(f 1(’7)) l=1§7_{:_oo (l—- ol (k ;—DO k DEF (6) (933‘l($) )
(2.90)
and
k
Bw=y, Slate éWl(ﬁ) (2:91)
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Making the assumptions that all the Taylor expansion series are
convergent®, the commutation error in the physical space is equal to

— k)
eagt]i= ¥ ae@r ¥ 505 | o

k=1,+00 k=0,+c0 dg

where Ay and By, are real non-zero coefficients. It is easily seen from relation
(2.92) that the commutation error is determined by the filter moments and
the mapping function. The order of the commutation error can then be
governed by chosing an adequate filter kernel. Vasilyev proposes to use a
function G such that:

@ =1 Veelnp , (2.93)
o® =0 1<k<n-1, Vée[n,f] , (2.94)
o) < oo k>, VEe|ag] . (2.95)

An immediate consequence is

da(k)
3

(©)=0, 0<k<n—1, Vec[mp] (2.96)

leading to

[G*, %J Y =0(4") . - (2.97)

The commutation error can be controlled by choosing a kernel G with
desired moment values. It is important noting that conditions (2.93) - (2.95)
do not require that the filter kernel be symmetric. Discrete filters verifying
theses properties will be discussed in Sect. 10.2.

Extension to the Multidimensional Case

SOCF Filters. SOCF filters are extensible to the three-dimensional case
for finite or infinite domains. Let (%1, 22, 23) be a Cartesian system, and
(X1, X2, X3) the reference axis system associated with a uniform isotropic
grid with a mesh size A. The two systems are related by the relations:

Xy = Hi(z1,29,23),  x1=hi(X1,X2,X3) (2.98)
Xo = Hy(z1,29,73), 32 = ho(X1, X2, X3) (2.99)
X3 = H3(z1,29,23), x5 =h3(Xy, Xo, X3) (2.100)

® Vasilyev et al. [332] show that this is always true for practical numerical simula-
tions.
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or, in vectorial form;

X=H(x), x=h(X), h=H"! . (2.101)

The filtering of a function P(x) is defined analogously to the mono-
dimensional case. We first make a variable change to work in the reference
coordinate system, in which a homogeneous filter is applied, and then per-
form the inverse transformation. The three-dimensional convolution kernel is
defined by tensorizing homogeneous mono-dimensional kernels.

After making the first change of variables, we get:

- _ _1_ Xi_X@{ / 3~ 1
) == [ ¢ (—Z )¢(h(x DEX, (2102)

i=1,3

or, in the origiral space:

— 1 Hi(x) - X! , ,
P(x) = =5 / i:|1|,3G<__Z )zp(h(x )d3X (2.103)
_ 1 -Hi(X)-—Hi(X,) X, x, 3x/
== / iﬂf(*“_z )w( )T (x )P, (2.104)

where J(x) is the Jacobian of the transformation X = H(x). Analysis of the
error shows that, for filters defined this way, the commutation error with the
derivation in space is always of the second order, i.e.

oY oY 2
e~ e =0@) (2.105)

where the second term of the left-hand side is written:

0 _ 1 1. Hj(x)—X;)
oo = 7] 5 <T
H;(x) - X { /
" i=11,—3£¢j ¢ (h(x_z—“) Hjp(x)p(h(X"))d*X’, (2.106)

with the notation:

Hjp(x) = %I;j(:—) . (2.107)

Differential analysis of the commutation error is performed by considering
the solutions of the form:

$(x) = P exp(ik - x) . ' (2.108)
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An analogous approach to the one already made in the mono-dimensional
case leads to the relation:

2.7

] 3]
— |y =—aPA A 2.109
[G* oz :l Y= A kapa (9 + O(k ) 3 ( )

where the function I'ypp is defined as:
Thmp = him,jq (FL(x)) hp, g (H(%)) Hj k(%) (2.110)

Van der Ven's Filters. Van der Ven’s simplified filtering naturally extends to
the three-dimensional case in Cartesian coordinates by letting:

B(x) = /R3 < 50 >¢(x’)d3x’ ) (2.111)

z:l 3

in which 8;(x) is the filter cutoff length in the ith direction of space at point
z. For a kernel G verifying (2.77), the commutation error is expressed:

{G* —] b=a o (X)é( -1 270 ¢( ) (2.112)

and is formally of order n — 1.

High-Order Commuting Filters. Vasilyev’s filters are generalized to the mul-
tiple dimension case in the same way as SOCF.

3. Application to Navier—Stokes Equations

This chapter is devoted to the derivation of the constitutive equations of
the large-eddy simulation technique, which is to say the filtered Navier—
Stokes equations. Our interest here is in the case of an incompressible viscous
Newtonian fluid of constant mass density and temperature.

We first describe the application of an isotropic spatial filter! to the
Navier-Stokes equations expressed in Cartesian coordinates?®. It should be
noted that this ideal framework, which implies that the fluid domain is un-
bounded, is the one nearly all authors use because it is only in this framework
that the theory on which the subgrid modeling is based can be fully developed.
The commutation errors between the filter and the derivation in space are
then ignored. Section 3.4 is on the application of an inhomogeneous filter to
the basic equations.

We begin by deriving the filtered Navier—Stokes equations. The various
decompositions of the non-linear term as a function of the filtered quantities
are then discussed. We lastly introduce the closure problem, i.e. the represen-
tation of the unknowns as a function of the variables in the filtered problem.

3.1 Navier—Stokes Equations

We recall here the equations governing the evolution of an incompressible
Newtonian fluid, first in the physical space, and then in the spectral space.

3.1.1 Formulation in Physical Space

In the physical space, the velocity field u = (u1,us, u3) expressed in a refer-
ence Cartesian coordinate system x = (1, %2, z3) is a solution of the system
comprising the momentum and continuity equations:

Ou; N Op o Ou; auj o
ot = Ox; (uin;) = Bz, +U‘8xj <8mj + 92 ) i=1,2,3 , (3.1)

1 Refer to the definition given in Chap. 2.

2 The case of the Navier-Stokes equation written in generalized coordinates will
not be considere  >re. It has been treated by Jordan [154].
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Bui
=0 , 3.2
9%, (3.2)
in which p = P/p and v are, respectively, the static pressure and the as-
sumedly constant, uniform kinematic viscosity. To obtain a well-posed prob-
lem, we have to add initial and boundary conditions to this system.

3.1.2 Formulation in Spectral Space

The dual system in spectral space is obtained by applying a Fourier transform
to equations (3.1) and (3.2). By making use of the fact that the incompress-
ibility constraint is reflected geometrically by the orthogonality® of the wave
vector k and of the mode ui(k) , defined as (see Appendix A for greater detail
on the spectral analysis of turbulence) : '

mm:@%?///m@4mﬁx Po_1 (3.3)

the system (3.1) - (3.2) can be reduced to a single equation:

(% + 2Vk2) ui(k) =Ti(k) , (34)
in which the non-linear term Tj(k) is of the form:
Tk) = Myn() [ [ %@)m(@3k—p-a)d'pa , (35
T with:
Mign () = =3 (P () + ks Pin (09) (5:6)

in which § is the Kronecker symbol and P;;(k) is the projection operator on
the plane orthogonal to the vector k. This operator is written:

Py;(k) = (51-- - k;ﬂ?) : (3.7)

3 This orthogonality relation is demonstrated by re-writing the incompressibility
constraint of the velocity field in the spectral space as:
8ui
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3.2 Filtered Navier—Stokes Equations
(Homogeneous Case)

This section describes the equations of large-eddy simulation such as they
are obtained by applying a homogeneous filter verifying the properties of
linearity, corservation of constants, and commutation with derivation, to the
Navier-Stokes equations. These are the equations that will be resolved in the
numerical simulation.

3.2.1 Formulation in Physical Space

In light of the commutation with derivation property, the application of a
filter to equations (3.1) and (3.2) is expressed:

ou; 5] - 8]_) 0 ou; 57,2]'

Bt " oa; T = g TV, (axj ‘a';") 39
ou; N
o =0 (3.9)

where P is the filtered pressure. The filtered momentum equation brings out
the non-linear term %;w; which, in order for this equation to be usable, will
have to be expressed as a function of W and w’, which are now the only
unknowns left in the problem and where:

v=u-1u . (3.10)

This decomposition is not unique, and will be discussed in the following
section.

3.2.2 Formulation in Spectral Space

Using the equivalence u;(k) = a(k)ﬂi(k), the momentum equation in the
spectral space obtained by multiplying equation (3.4) by the transfer function -
G(k) is expressed:

»(% + zykz) G (k) = Gk)Ti(k) (3.11)

in which the filtered non-linear term GA(k)Ti(k) is written:

G () = Mijm (K) / / (), (p)im(@0(k — p — Q)®pd’q . (3.12)

The filtered non-linear term (3.12) brings out the contributions of the
modes U(p) and t(q). To complete the decomposition, these modes also
have to be expressed as the sum of a filtered part and a fluctuation. This is
the same problem as the one encountered when writing the equations in the
physical space. This operation is described in the following section.
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3.3 Decomposition of the Non-linear Term.
Associated Equations

This section details the various existing decompositions of the non-linear term
and the associated equations.

3.3.1 Leonard’s Decomposition

Expression in Physical Space. Leonard [186] expresses the non-linear
term in the form of a triple summation:

It

Wy = (U; + ) (@) + ul) (3.13)

(3.14)

= UlUj -+ Ezug + ﬂju§ + u;u;
The non-linear term is now written entirely as a function of the filtered
quantity T and the fluctuation u’. We then have two versions of this [347].
The first considers that all the terms appearing in the evolution equations
of a filtered quantity must themselves be filtered quantities, because the sim-
ulation solution has to be the same for all the terms. The filtered momentum
equation is then expressed:
Ot; 17}

== _ 0P 0 (0u 05\ Oy
o " o ) T 5 Y (awﬁaxi) b 19

in which the subgrid tensor 7, grouping together all the terms that are not
exclusively dependent on the large scales, is defined as:

7ij = Cij + Rij = Tith; — Uity (3.16)

where the cross-stress tensor, C, which represents the interactions between
large and small scales, and the Reynolds subgrid tensor, R, which reflects the
interactions between subgrid scales, are expressed:

~
~

Cij = wul, +uju, (3.17)
Ry = uld, . (3.18)

(S
-,

.~

In the following, this decomposition will be called double decomposition.

The- other point of view consists of considering that it must be possible
to evaluate the terms directly from the filtered variables. But the %;u; term
cannot be calculated directly because it requires a second application of the
filter. To remedy this, Leonard proposes a further decomposition:
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U;U; = (ﬁi’ljj - ﬂiﬂj) + U
= Lij +uguy; . (3.19)
The new L term, called Leonard tensor, represents interactions among the

large scales. Using this new decomposition, the filtered momentum equation
becomes:

o 0 qmyo B, 0 (08 Ou) Omy
ot Oz LT B Ox; \Or; Oz Oz

The subgrid tensor 7, which now groups all the terms that are not ex-
pressed directly from %@, takes the form:

(3.20)

Tij = Lij + Cij + Ryj = Uiy — Wty - (3.21)

This decomposition will be designated hereafter the Leonard or triple
decomposition. Equation (3.20) and the subgrid term 7;; defined by (3.21)
can be obtained directly from the Navier-Stokes equations without using the
Leonard decomposition for this. It should be noted that the term %;u; is
a quadratic term and that it contains frequencies that are in theory higher
than each of the terms composing. So. in order to represent it completely,
more degrees of freedom are needed than for-each of the terms %; and u;t.

We may point out that, if the filter is a Reynolds operator, then the
tensors C;; and L;; are identically zero® and the two decompositions are
then equivalent, since the subgrid tensor is reduced to the tensor R;;.

4 In practice, if the large-eddy simulation filter is associated with a given compu-
tational grid on which the Navier—Stokes equations are resolved, this means that
the grid used for composing the %;u; product has to be twice as fine (in each
direction of space) as the one used to represent the velocity field. If the product
is composed on the same grid, then only the ﬁﬁ]— term can be calculated.

5 1t is recalled that if the filter is a Reynolds operator, then we have the three
following properties (see Appendix A): )

whence
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Writing the Navier-Stokes equations (3.1) in the symbolic form

fu
i NSu) (3.22)
the filtered Navier—Stokes equations are expressed
du ou
= NS(@) + [Gx, NS](u) (3.24)

where [.,.] is the commutator operator introduced in Sect. 2.1.2. We note
that the subgrid tensor corresponds to the commutation error between the
filter and the non-linear term. Introducing the bilinear form B(,):

B(’LL«L', u]') = Uiy (325)

we get

Ty = [Gx, Bl(us,ug) (3.26)

Double decomposition (3.16) leads to the following equation for the re-
solved kinetic energy ¢? = w;7;/2:

0 _ ——0u; 0w 0w Ow;
ot Uity 5$j Tij 812j 6.’1)j 8.’Ej
e LN .
I II I
9 _ 0 dq?
" 35, WP+ g (”am,.)
Iv 174
0 0 '
- 7 (WU ) — — (UiTss . 3.27
?mj (u;w ;) o, (u TJZ (3.27)
VI VII

This equation shows the existence of several mechanisms exchanging ki-
netic energy at the resolved scales:

— I - production

— IT - subgrid dissipation

— III - dissipation by viscous effects

— IV - diffusion by pressure effect

— V - diffusion by viscous effects

— VI - diffusion by interaction among resolved scales
— VII - diffusion by interaction with subgrid modes.

3.3 Decom,. _sition of the Non-linear Term. Associated Equations 37

Leonard’s decomposition (3.21) can be used to obtain the similar form:

8(]3 6qf Uj o, o, ou;
= — -—‘-I-Tij—— — Ve
ot 8xj 8.’17]' (9(3_7' B;r,j
’ N——r S———’
VIII IX X
_ Oq;
oa; (T Ha_;(”axz)
XI XII
— 0w 9 _
+ U U a—w; - a—w; (Ule) . (328)
XIIr XI1v

This equation differs from the previous one only in the first and sixth
terms of the right-hand side, and in the definition of tensor 7

— VIII - advection

—IX -idem II
- X -idem IIT
- XI-idem IV
— XII-idemV

— XIII - production
— XIV - idem VII

The momentum equation for the small scales is obtained by subtract-
ing the large scale equation from the unfiltered momentum equation (3.1),
making, for the double decomposition:

ou 0 op’

5 " oz, (@ + ) (@ +uf) — T, — mj) = "oz, (3.29)
0 (ou] 5U}
+ UB_:L'J'— (8x] + 6501 ’

and, for the triple decomposition:

ol 8 op'

T+ U+ — T — 7o) = _
a1 +8xj ((_uﬂruz)(u:,-kuy) T 7',]) o, (3.30)
b2 (2, o
V@wj a'lfj (9.737,

The subgrid kinetic energy qus = upuy /2 equation obtained by multiply-
ing (3.30) by uj and filtering the relation thus derived is expressed:



38 3. Application to Navier-Stokes Equations

02, 8 ., 19 Y
e — D (i) (OO — )~ 5 (75~ P
XV XVI XVII
o [ ¢, o, _
+ B2, (V Do —|~5—3;;(Tz_,uz)
S —
XVIIT XIx
Oui du;  Ou; Ouy _Tij% (3.31)
Bx; Oz; Oz dx; Oz;
XX XXI
— XV - advection
— X VI - turbulent transport
— XVII - diffusion by pressure effects
— XVIII - diffusion by viscous effects
— XIX - diffusion by subgrid modes
— X X - dissipation by viscous effects
— X XTI - subgrid dissipation.
For the double decomposition, equation (3.29) leads to:
a.qszgs a — — = 6“1 = ?E
ot = — ?9?3 (UiUin - umm,) + Ui 32, Uiy 8z,
XXII , XXIII
' R — " 0%u; _ﬁwm
— a_m;(puj—puj)—i—u Uiy 2 Z*ng
| —
XXIV XXV
+ 2 o (3.32)

o, (Ti5:) — Tija_wj )

XXVI
with:

— X XII - turbulent transport

— X XIII - production

— XXIV - diffusion by pressure effects

— XXV - viscous effects

— X XVI - subgrid dissipation and diffusion

1t is recalled that, if the filter used is not positive, the generalized subgrid
kinetic energy qgsgs defined as the half-trace of the subgrid tensor,

2 _
qgsgs = Tkk /2 ?
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can admit negative values locally (see Sect. 3.3.5). If the filter is a Reynolds
operator, the subgrid tensor is then reduced to the subgrid Reynolds tensor

and the generalized subgrid kinetic energy is equal to the subgrid kinetic
energy, i.e.

1
qszgS = iu;u; = qgsgs =Tre/2 . (3.33)

Expression in Spectral Space. Both versions of the Leonard decompo-
sition can be transcribed in the spectral space. Using the definition of the
fluctuation W' (k) as

(1) = (1 — G (k) (3.30)

the filtered non-linear term G(k)T;(k) is expressed, for the triple decompo-
sition: '

&wmm=Ammm//é@ﬁmm@mM@W«m-mfm%
- Me® [ [0-G00)8@IE@
XU (p)tm (q)d(k — p — q)d3pd3

+ Mgk //G (0)(1 ~ () + la)(1 - O(p)))

Xt;(p)im(q)6(k — p — q)d’pd’q
+ Mg (K //Gm ) (1~ G - Gm))
Xt (p)im(q)§(k — p — q)d’pd’q . (3.35)

The first term of the right-hand side corresponds to the contribution u;%; ,
the second to the Leonard tensor L, the third to the cross stresses represented
by the tensor C, and the fourth to the subgrid Reynolds tensor R. 'This is
illustrated by Fig. 3.1.

The double decomposition is derived by combination of the first two terms
of the right-hand side of (3.35):

CUIT() = Migm(®) [ [ G@IC@E)

XU (P)tm (Q)d(k — p q)d3pd3
+ M9 [ [ 600 (801 - Bla) + Gla)(1 - Glo)
X (p)dm(a)d(k —p — Q)d3Pd3
+w@mm//G& (1 - G)(1 - G(p)))
~(P)im(a)d(k — p — q)d’pd’q . (3.36)
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The first term of the right-hand side corresponds to the contribution wiu;
in the physical space, and the last two remain unchanged with respect to the
triple decomposition. Let us note that the sum of the contributions of the
cross tensor and the subgrid Reynolds tensor simplifies to the form:

Cij+ Ry = Mijm(k)//(l - G(p)G(a)G(k)
x;(p)im(a)d(k — p — q)d’pd’q . (3.37)

"The momentum equations corresponding to these two decompositions are
found by replacing the right-hand side of equation (3.11) with the desired
terms. For the double decomposition, we get:

(;+mﬂ>&mwm=ﬂ%MM//@m&®@M
X (B)im(@)3(k — p — q)dpd°q
+ M@0 [ [~ B@)E@)E0)

x;(p)im(q)d(k — p - q)d’pd’q
(3.38)

and for the triple decomposition:

<gt +2uk2) GR)Ti(k) = Mijm(K) / / G(p)G(q)
XTj(p)im(q)6(k — p — q)d°pd’q
Mig1) [ [(1-60)E@I5(a)
X (p)im(q)d(k ~ p q)d’pd’q
+ M9 [ [ 609 (Go)1 - Cla)
Gla)(1 - G(p)))

xU;(p)lm(q)d(k ~ p - Q)d3pd3

+ Mygn(9) [ [ 600 (10~ Byt - 8w))

xU;(P)tim(q)d(k — p ~ q)dspd""q . (3:39)
For both decompositions, the momentum equation can be expressed in
the symbolic form: .
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k ke p

Fig. 3.1. Representation of the various Leonard decomposition terms in the spectral
space, when using a sharp cutoff filter with a cutoff frequency k.

( gt + 2yk2> G)Ti(k) = Ty(K) + Tige(k)  (3.40)

in which T;(k) designates the transfer terms calculated directly from the

resolved modes, and is therefore equivalent to the contribution of the ;7 ‘
term in the case of the triple decomposition, and that of the T;%; term for

the double decomposition. The Tggs(k) term designates the other non-linear
terms, and therefore corresponds to the contribution of the subsidiary term -
such as defined above. Let E(k) be the energy contained on the sphere of

radius k. It is calculated as:

1 A ~
B(k) = .1 / (k) - @ (K)dS(K) (3.41)
where dS(k) is the surface element of the sphere, and where the asterisk desig-

nates a conjugate complex number. The kinetic energy of the resolved modes
contained on this same sphere, denoted E,(k), is defined by the relation

Bo(k) = / E)T(K) - B)T* (k)dS (k) (3.42)

G2 (k)E(k) . (3.43)
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We return to the kinetic energy of the resolved modes, ¢2 = w;u;/2 , by
summation on all the wave numbers:

= / oo”Er(k)dk . (3.44)
0

It is important to note that E, (k) is related to the energy of the resolved
modes, which is generally not equal to the filtered part of the kinetic energy
which, for its part, is associated with the quantity denoted E(k), defined as

E(k) = G(k)E(k) . (3.45)

The identity of these two quantities is verified when the transfer function
is such that G2(k) = (k), Yk, i.e. when the filter used is a projector. The
evolution equation for E,(k) is obtained by multiplying the filtered momen-
tum equation (3.11) by k2G(k)1i* (), and then integrating the result on the
sphere of radius k. Using the double decomposition we get the following
equation:

(5 +24) B = 5 [ [ GG 1) clp,a)ipda

+3 [ [0~ C@E@E WS kP adpda
(3.46)

and the triple decomposition:

<§t +21/]g2) E, (k) = %//Aa(p)é(q)@(k)g(kmq)dpdq
- L[ [ @00 - 60)wGtastip, avia

+3 [ [ &0 (G
x (1 - G(@) + G(a)(1 ~ G(p))) S(klp, a)dpdq
+ 3 [ /600 (0 - G0 - Ge)
- xS(k|p,q)dpdq (3.47)
in which
S(k|p,q) = 167°kpgMijm (k)i; (P)um(@)ti(~k)é(k —p—a) , (3.48)

and where the symbol [ [, designates integration over the interval
Ik —pl <q<k+p.
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Following the example of what was done for the momentum equations,
the kinetic energy evolution equation for the resolved modes can be expressed
in the abbreviated form

(% + MQ) Br(k) = Ty (k) + Ty (k) (3.49)

The terms T (k) and T, (k) represent, respectively, the energy transfers
of mode k with all the other modes associated with the terms that can be
calculated directly from the resolved modes, and the subgrid terms. The
kinetic energy conservation property for inviscid fluids, i.e. in the case of
zero viscosity, implies:

/ (Te(k) + Tee(k)d’k =0 . (3.50)

The momentum equations for the unresolved scales are obtained by alge-
braic manipulations strictly analogous to those used for obtaining the equa-
tions for the resolved scales, except that this time equation (3.4) is multiplied
by (1 — G(k)) instead of G(k). These equations are written:

<% + Zz/kz) (1 -Gk = (1-GE)Tik) . (3.51)

Calculations similar to those explained above lead to:

<66t + 2yk2> A'(k) M;jm (k) / / G(p)G(a)(1 — G(x))
XU;(p)um(q)d(k — p — q)d3pd3
+ Mijm(k //1— (61 - G(a)

+G(a@)(1 - Gp))
x@;(p)im(a)d(k — p — q)d’pd’q

+ M) [ [0 609) (- Gy - Gw))
xT;(p)im(q)d(k — p — @)d’pd’q . (3.52)

The first term of the right-hand side represents the contribution of the
interactions between large scale modes, the second the contribution of the.
cross interactions, and the last the interactions among the subgrid modes.

Let Esgs be the energy contained in the subgrid modes. This energy is
defined as:
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Elogs(k) = %k? / (1 - Gk))i(k) - (1 - GK)T* (k)dS(k)  (3.53)
(1-G)2(k)E(K) , (3.54)

Il

and is different}\ in the general case, from the kinetic energy fluctuation
E'(k) = (1 — G)(k)E(k), though the equality of these two quantities is
verified when the filter is a Reynolds operator. Simple calculations give us
the following evolution equation for Eg (k) :

(% + 2yk2> Eoge(k) = %//A G(p)G(a)(1 — G(K))*S(Klp, a)dpdq
1 —~ —~ ~
N 5//Au - G) (G)(1 - G(a)
+G(q)(1 - @(p))) S(k|p, q)dpdq

+3 [ [L0-80020-a)n - )
xS(klp,q)dpdq , (3.55)

where the notation used is the same as for the kinetic energy evolution equa-
tion of the resolved modes. The subgrid kinetic energy qszgs is obtained by
summation over the entire spectrum:

Gags = / BEgys(k)dl (3.56)
0

3.3.2 Germano Cousistent Decomposition

This section presents the Germano consistent decomposition, which is a gen-
eralization of the Leonard decomposition.

Definition and Properties of Generalized Central Moments. For
convenience, we use [¢]g to denote the resolved part of the field ¢, defined
as in the first chapter, where G is the convolution kernel, i.c.:

o) =Grom = [~ Cx-OpOfe . @)

We.define the generalized central moments with the filter G , denoted 7q,
as [113,115-117]:

Ta(d1, ¢2) = [P1da]a — [d1]cldo)e (3.58)
76(61, ¢2,83) = [p1¢2dsle — [p1]ara (P, ds) — [da]are (b, ¢3)
—[#s]ara(ds, d2) — [¢1]cd2lcldsla (3.59)

7G(61, P2, 3, 04) = ... (3.60)
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The generalized central moments thus defined verify the following prop-
erties: .

a($¥) = ey, ¢) (3.61)
1a(¢,a) = 0, for a = const. (3.62)
Ta(¢,v,a) = 0, for a = const. (3.63)

87—G(¢= 1/))/83 = TG (8¢/83, 1/)) +7¢ (¢)7 3¢/88)7 s=x,t . (364)
If we perform the decomposition ¢ =1+ do, 9 =1y + 1/)2,.We get:

7a (Y1 + Y2, ¢1 + ¢2) = 16(¥1, é1) + TG (Y1, ¢2)
+ 76 (b2, ¢1) + Ta (o, ¢2) . (3.65)

The generalized central moments also appear as the coefficients of the
following formal Taylor expansion [116]:

[¢(G,1, ] an)]G = ¢([a1]G, ceey [an]G) —+ Z __TG(azl; am)ylm
lm

76 (a1, m, ax)
+3 e mk e (3.66)

lL,m,k

with

" _ P¢(laile, - [an)e) " _ ¢(lar]g, .- [an] )
™ Oladedlamle "™ T Ba)cOlam]cOlarlc

and where the a; are generic turbulent quantities. The relation (3.66) estab-
lishes a link between the filtered value of the functional ¢ and its unfiltered
counterpart applied to the filtered variables laia.

Consistent Decomposition: Associated Equations. By applying the
property (3.65) to the decomposition ¢ = [¢|g + ¢/, 1) = Wl + ¢/, we get:

Ta([dle + ¢, [Wle +¥') = a((¢le, [¥]e) + ma(¢', [Yle)
tre([@le,¥) +1a(d,9) . (3.67)

This decomposition is said to be consistent because it is consistent with
the definition of the generalized central moments, ensuring that all the terms
in it are of the same form, which is not true of the Leonard decomposition.
The various terms of the right-hand side of equation (3.67) can be interpreted
as generalizations of the terms of the Leonard triple decomposition. By ap-
plying this definition to the components of the velocity fields, the subgrid
tensor (3.21) appears in a double form: '
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Ta(us,ui) = [ugla — [uilclusle
= L + Cij + Rij
= Ly +Cij +Ri5 (3.68)

in which the tensors £, C and R are defined as:

Eij = TG([ui]Gw [Uj]G) 3 (369)
Cij = ma(luile,uj) +Ta(uy; [ule) (3.70)
RU = Tg(u;,’u,;-) s (3.71)

and represent, respectively, the interactions between the large scales, the
cross interactions, and the interactions among subgrid scales. They therefore
represent tensors defined by Leonard, but are not the same as them in the
general case.

By bringing out the generalized central moments, the filtered momentum
equations are written in the form:

2 ) -4 4+, (O )
_Orelusyy) (3.72)
Bwj

This equation is equivalent to the one derived from the triple Leonard
decomposition. Similarly, the subgrid kinetic energy evolution equation (3.31)

is re-written as: .
dq g (1 N 025
_(,ig—s = % <§7g(ui,u¢,uj)+7'c(p,uj) v 95
Ouil 3.73
— I/Tg(aui/amj,aui/al’j)*Tg(ui,u]-) O . ( . )
J

It is easy to check that the structure of the filtered equations is, in terms
of generalized central moments, independent of the filter used. This is called
the filtering (or averaging) invariance property.
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3.3.3 Germano Identity

Basic Germano Identity. Subgrid tensors corresponding to two different
filtering levels can be related by an exact relation derived by Germano [115].
A sequential application of two filters, F' and G, is denoted:

[uilre = [[wilrle = [[wilclr (3.74)

or equivalently:

400 40
ot = [ G-y [ Py -Qu@©dt . @)
Here, [u;]pg corresponds to the resolved field for the double filtering FG.
The subgrid tensor associated with the level F'G is defined as the following
generalized central moment:

ra (Ui, u5) = [uyglre — [uilrlulre (3.76)

This expression is a trivial extension of the definition of the subgrid ten-
sor associated with the G filtering level. By definition, the subgrid tensor .

7a([uilF, [u;]r) calculated from the scales resolved for the F filtering level, is
written:

a([uilr, [ujlF) = [[uilrlujlrle — [uidreluslre (8.77)

These two subgrid tensors are related by the following exact relation,
called the Germano identity:

Tea (s, u5) = 19 (us, u3)]a + 76 (uile, [usle) . (3.78)

This relation can be interpreted physically as follows. The subgrid tensor
at the F'G filtering level is equal to the sum of the subgrid tensor at the F
level filtered at the G level and the subgrid tensor at the G level calculated
from the field resolved at the F' level. This relation is local in space and time
and is independent of the filter used.

It is interesting noting that re-writing the subgrid tensor as

TG (Ui, uj) = [F* Gx, B](u,uj)

where [, .] is the commutator operator (see equation (2.13)) and B(.,.) the
bilinear form defined by relation (3.25), the Germano identity (3.78) is strictly
equivalent to relation (2.16):

[F'x G, B](us, uz) = [F*, B] o (G*)(u;, u;j) + (Fx) o [G%, B](ui,uj) . (3.79)
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Multilevel Germano Identity. The Germano Identity can be extended
o the case of N filtering levels, G;,i = 1, N, with associated characteristic
lengths Ay <A < ... < Ay [117, 290,327]._n

We define the nth level filtered variable ¢ as

3 =G Grr % kG k=Gl x¢p | (3.80)

with
m=GnxGno1 %% G, 8 =1d, Vme€[l,n] . (3.81)
Let 77 = w;u;" —u;u; be the subgrid tensor associated to the nth filtering

level. The classical two-level Germano identity (3.78) reads

i
Simple algebraic developments lead to the following relation between two
filtering levels n and m, with m < n:

K

—n+1
n+1 _ T & L,;}+1

— 1 .
—7 =Ty —artatt L (3.82)

L t J

=L+ Y G+ gnaTtl (3.83)

k=m+1n—1
resulting in a fully general mutilevel identity.

Generalized Germano Identity. A more general identity is obtained by
applying an arbitrary operator £ to the basic identity (3.79) [287], yielding

L{[F % Gx, B](ui, u;)]} = L{[F*, B] o (G¥)(us, u;)
-+ (F*) o [G*, B](ui,uj)} . (384)

For linear operators, we get

L{[F % G, B)(ui,uy)]} = L{[Fx, B] o (Gx)(us, uy)}
+ L{(F%) o [Gx, B)(us,u;)} . (3.85)

Application to the multilevel identity (3.83) is straightforward.
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3.3.4 Invariance Properties

One of the basic principles of modeling in mechanics is to conserve the generic
properties of the starting equations [105, 121,259, 313].

We consider in the present section the analysis of some invariance/symme-
try properties of the filtered Navier-Stokes equations, and the resulting con-
straints for subgrid models. It is remembered that a differential equation will
be said to be invariant under a transformation if it is left unchanged by this
transformation. It is important to note that these properties are not shared
by the boundary conditions. It is shown that properties of the filtered Navier—
Stokes equations depend on the filter used o operate the scale separation.
The preservation of the symmetry properties of the original Navier-Stokes
equations will then lead to the definition of specific requirements for the filter
kernel® G(z, ¢). The properties considered below are:

— Galilean invariance.
— Time invariance.

— Rotation invariance.
~ Reflection invariance.
— Material indifference.

Galilean Invariance. This section is devoted to the analysis by Speziale
[313] of the preservation of the Galilean invariance property for translations
of the Navier-Stokes equations, first by applying a filter, then by using the
different decompositions presented above.

Let us take the Galilean transformation (translation):

x*=x+Vt+b, t*=t , (3.86)

in which V and b are arbitrary uniform vectors in space and constant in
time. If the (x,t) reference system is associated with an inertial reference
system, then so is (x*,¢*). Let u and u® be the velocity vectors expressed
in the base coordinate system and the new translated one, respectively. The
passage from one system to the other is defined by the relations:

u'=u+V o, (3.87)
o 9
il el (3.88)
0 .90 _y 90 (3.89)

ot ot o,
The proof of the invariance of the Navier-Stokes equations for the trans-
formation (3.86) is trivial and is not reproduced here. With this property in

6 We will only consider filters with constant and uniform cutoff length, ie. A is’

independent on both space and time. Variable length filters are anisotropic or
nonhomogeneous, and violate the following properties in the most general case.
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hand, what remains to be shown in order to prove the invariance of the filtered
equations by such a transformation is that the filtering process preserves this
property.

Let there be a variable ¢ such that

P=¢ . (3.90)

The filtering in the translated coordinate system is expressed:

7= / Glx® — x*')g* (x" )% . (3.91)
By using the previous relations, we get:
x*—x" = (x+Vt+b)—(x' +Vt+b)=x—-x", (3.92)
3 0’ (933.2 3! 3./
&x® = |—|d’% =d’x" (3.93)
J

and thus, by substitution, the equality:

& = /G(x— o V% =¢ | (3.94)

which completes the proof’. The invariance of the Navier-Stokes equations
for the transformation (3.86) implies that the sum of the subgrid terms and
the convection term, calculated directly from the large scales, is also invariant,
but not that each term taken individually is invariant. In the following, we
study the properties of each term arising from the Leonard and Germano
decompositions.

The above relations imply:

WontV, u =, 2 = , (3.95)

which reflects the fact that the velocity fluctuations are invariant by Galilean
transformation, while the total velocity is not. In the spectral space, this
corresponds to the fact that only the constant mode does not remain invariant
by this type of transformation since, with the V field being uniform, it alone
is affected by the change of coordinate system®.

7 A sufficient condition is that the filter kernel appears as a function of x — x'.
8 This is expressed:

V =cste => V(k) =0Vk #0 ,
and thus
w (k) =0k) Vk#£0 ,
u®(0) = §(0) + V(0)
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In the transiated system, the Leonard tensor takes the form:

Ly = s — (3.96)
= Li; + (Viw; + Vjw;) — (Vim; + Vi) (3.97)
= Ly — (Viw; + Viwj) . (3.98)

So this-tensor is not invariant. Similar analyses show that:

Cy = Gy + (Vi) + Viwy) (3.99)
Ry = Ry (3.100)
L;j +C:J =Ly +Cj . (3.101)

The tensor C is thus not invariant in the general case, while the tensor R
and the groups L+C and L+C-R are. A difference can be seen to appear here
between the double and triple decompositions: the double retains groups of
terms (subgrid tensor and terms computed directly) that are not individually
invariant, while the groups in the triple decomposition are.

The generalized central moments are invariant by construction. That is,
by combining relations (3.65) and (3.61), we immediately get:

& (ug, ug) = 16 (us, uz) - (3.102)

This property results in all the terms in Germano’s consistent decompo-
sition being invariant by Galilean transformation, which is all the more true
for the tensors £, C and R.

Time Invariance. A time shift of the amount % yields the following change
of coordinates:
t*=t+ty, x"=x%x, u'=u . (3.103)

-Since we are considering space dependent filters only, the filtered Navier— -
Stokes equations are automatically time-invariant, without any restriction on
the filter kernel. We have:

=1 u’=u , (3.104)
and
Tik = Tik (3.105)
o = Ly (3.106)
Ry, = Ry (3.107)

All the subgri” “srms are invariant.
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Rotation  Invariance. We now consider the following change of reference
system:

=t x*=A4Ax, u®=Au , (3.109)

where A is the rotation matrix with ATA = AAT = Id and |A] = 1. Simple
calculations similar to those shown for in the section devoted to Galilean
invariance lead to the following relations:

U = At, u” =A4u | (3.110)
if and only if the filter kernel G(z, ¢) satisfies

GlAz - ) =Gz —¢) =Gz, =Gz —¢|) , (3.111)

meaning that the filter must be spherically symmetric. The subgrid terms are
transformed as:

Tik = AimArnTnn (3.112)
e = AimAgn Loy (3.113)
% = AinAgn R, (3.114)
e = AimAgnCrn (3.115)

and are seen to be invariant.

Reflection Invariance. We now consider a reflection in the Ith direction of
space:

=1 2] = ;8] = x84 ) = —upul =i Al (3.116)

If the filter is such that G(z — &) = G(~z + €), i.e. is symmetric, then

W= UG = Wyd A Ly = —upud =i AL (3.117)
yielding

Tie = BTk, (3.118)

L = BLy | (3.119)

Ry =GRy (3.120)

Cix = BCu (3.121)

with 8= ~1ifi=1lork =1and i # [, and 8 = 1 otherwise. We can see
that the subgrid tensor and all the terms appearing in both the double and
triple decomposition are invariant.
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Material Indifference. The last symmetry considered in the present sec-
tion is the material indifference, which is a generalization of the preceding
cases. The change of frame is expressed as:

"=t x*=A{t)x+c(t), v =Autd(t), dt)=c+Ax | (3.122)

where the rotation matrix A is such that ATA = AAT — | d,|Al =1 and
c(t) is a vector.
The resulting changes of the subgrid and resolved velocity field are:

U =Ad+d, u”=Ad |, (3.123)
yielding
Tik = AimTonAn (3.124)
;k = AimTmnLin — By, - ’ (3.125)
it = AimTmnCrn + B, (3.126)
Ry = AimRmnAkn ) (3.127)
with

Bij = u;dj + u;d,

These properties are subjected to the condition G(z,8) = G(|lz — &|). We
can see that the properties of the subgrid tensors are the same as in the case
of the Galilean invariance case.

Table 3.1 summazizes the results dealing with the symmetry properties.

Table 3.1. Invariance properties of convolution filters and subgrid tensors

Symmetry .. G(z, &) L C L+C R

Galilean translation  G(z - ¢) no no  yes yes
Time shift G(z,€) yes yes yes yes
Rotation G(lz —¢|) yes yes yes yes
Reflection Glz—-§) =G(E—-z) yes yes yes yes
Material indifference ~ G(|z — €[) no  1no  yes yes
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3.3.5 Realizability Conditions

A second-rank tensor 7 is realizable or semi-positive definite, if the following
inequalities are verified (without summation on the repeated greek indices)
[121, 340):

Taa = 07 a == 15273 ) (3'128)
|Taﬁl < VTaaTBB;s a,f=1,2,3 , (3129)
det(r) >0 . (3.130)

These conditions can be written in several equivalent forms [121]. Some
of these are listed below.

1. The quadratic form
Q = ziTi; T (3.131)

is positive semidefinite.
2. The three principal invariants of 7 are nonnegative:

Il = ZTQ,B s 0 ) (3132)

I, = Z(Taﬂﬁﬂ —725)>0 (3.133)
a#f

I3 = det(T) >0 . (3.134)

The positiveness of the filter as defined by relation (2.24) is a necessary
- and sufficient condition to ensure the realizability of the subgrid tensor 7.
Below, we reproduce the demonstration given by Vreman et al. [340], which
is limited to the case of a spatial filter G(x—&) without restricting the general
applicability of the result.

Let us first assume that G > 0. To prove that the tensor 7 is realizable at
any position x of the fluid domain €2, we define the sub-domain {2, represent-
ing the support of the application & — G(x — &). Let F; be the space of real
functions defined on €. Since G is positive, for ¢, € Fy, the application

(6,9 = /Q Gl ~ £)p(E)p(€)de (3.135)

defines an inner product on F,. Using the definition of the filtering, the
subgrid tensor can be re-written in the form:
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’Ti;(X) = ﬂ@(x) - ﬁi (X)ﬁj (X)

= Wity (%) — Wi (%) (%) — % (%) (%) + T (%) (x)

= [ 66c-Ou©u e - m(x) | cx-ouere
Qg Qx
- (x) /Q Glx — &)us(€)de — T (x)T; (x) /Q Glx — &)de

- /Q G~ €) (&) — T(x)) (u; (€) — T;(x))
= (u,uf)s (3.136)

where the difference u?(§) = u;(€) — W;(x) is defined on €. The tensor 7
thus appears as a Grammian 3 x 3 matrix of inner products, and is conse-
quently always defined as semi-positive. This shows that the stated condition
is sufficient.

Let us now assume that the condition G > 0 is not verified for a piecewise
continuous kernel. There then exists a pair (x,y) € 2 xQ,ane € R", ¢ > 0,
and a neighbourhood V = {£ € , € —y| < €}, such that G(x— &) <0, V€ €
V. For a function u; defined on Q such that u;(£) #0if &€ €V et u1(€) =0
everywhere else, then the component 717 is negative:

() = (o) - @(0) < [ Gx-g) (@) de<0 . (330

3 14
The tensor 7 is thus not semi-positive definite, which concludes the demon-
stration. The properties of the three usual analytical filter presented in Sect.

2.1.5 are summarized in Table 3.2.

Table 3.2. Positiveness property of convolution filters

Filter _Eq. Positiveness
Box (2.37)  yes
Gaussian (2.39) yes

Sharp cutoff (2.41) no

3.4 Extension to the Inhomogeneous Case

The results of the previous sections were obtained by applying isotropic
homogeneous filters on an unbounded domain. What is presented here are
the equations obtained by applying non-homogeneous convolution filters on
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bounded domains. Using the commutator (2.13), the most general form of

the filtered Navier—Stokes equations is:

8:L_Li + i(ﬂ.ﬂ)_%@___y_a__ ?Eﬁ_*_a_ﬂl —_aTij
ot Oz; v oz; Oz; \Oz; O B Oz;

- [G*, %} (us) — {G*, é%] (uiu;)
|

—G*i (p) +v G’*-———a—z——(') (3.138)
"B | P Dby | '
on; . 0 ‘
5_:5; = — [G*, _-8331‘:' (Uz) . (3139)

All the terms appearing in the right hand side of equations (3.138) and
(3.139) are commutation errors. The first term of the right hand side of the
filtered momentum equation is the subgrid force, and is subject to modeling.
The other terms are artefacts due to the filter, and escape subgrid modeling.

The governing equations obtained using second-order commuting filters
(SOCF), as well as the technique proposed by Ghosal and Moin [123] to
reduce the commutation error and Vasilyev’s high-order commuting filters
[332], are presented in the following.

3.4.1 Second-Order Commuting Filter

Here we propose to generalize Leonard’s approach by applying SOCF filters.
The decomposition of the non-linear term considered here as an example is
the triple decomposition; but the double decomposition is also usable. For
convenience in writing the filtered equations, we introduce the operator D;
such that:

K
Bwi
According to the results of Sect. 2.2.2, the operator D; is of the form:

=Dip . (3.140)

14} —2 0?2
D; = — oA T,
oz, T B2

+0@Y (3.141)

in which the term T is defined by the relation (2.110). By applying the
filter and bringing out the subgrid tensor 7;; = Wu; — U;u;, we get for the
momentum equation:

0t;

W + 'Dj(ﬂiﬁj) = -D;p+ VDijﬁi — DjT,-j . (3.142)

To measure the errors, we introduce the expansion as a function of A:
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_ — “2_
N =79 +A50 ¢ ... ©(3.143)
= @4 A% + . (3.144)
The terms corresponding to the odd powers of A are identically zero

because of the symmetry of the convolution kernel. By substituting this
decomposition in (3.142), at the first order we get:

81’1; + Vafl‘j

5@('0) + 9 (a(o)a(o)) op'% 9 ‘%1@ + 8’@5_0) aTi(JQ)
ot Ox; \t T oz; Oz ox;
(3.145)

in which 7'1-(;)) is the subgrid term calculated from the field @) . The associated
continuity equation is: :
ou”
K3
&vi

These equations are identical to those obtained in the homogeneous case,

=0 . ' (3.146)

but relate to a variable containing an error in O(ZQ) with respect to the
exact solution.

To reduce the errdr, the problem of the term in 2 has to be resolved, i.e.
solve the equations that use the variables (") and p(V). Simple expansions
lead to the system:

oul” o p0 M ou
U, +_(ﬂ§1)ﬂ§o)+ﬁgo)ﬂ§1)) __op 0 [ ou, N U

ot ' Bz, oz; ' "ba; \ 0z; | o
8’7‘7;(-1)
—a—;j-i-a(z)fi(l) , (3.147)

in which the &Vc‘oupling term fi(l) defined as:

_(0),(0) _ 0
f(l) - an 62(Ui uj ) imn 8217(0) imn 62Ti(j)
g J 001, 0L 0%y, I oy O
Ot 0°T”) 8%z
Y onr OzmOz, ZF’“m"axkaxmamn : (3.148)
oa)
( ;‘;i =0 . (3.149)

By solving this second problem, we can ensure the accuracy of the solution

up to the order O(Z4) .
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3.4.2 High-Order Commuting Filters

The use of Vasilyev’s filters (see Sect. 2.2.2) instead of SOCF yields a set of
governing filtered equations formally equivalent to (3.142), but with:

0
axi
where the order of accuracy n is fixed by the number of vanishing moments
of the filter kernel. The classical filtered equations, without extra-terms ac-
counting for the commutation errors, relate to a variable containing an error
scaling as O(Zn) with respect to the exact filtered solution.

Dy=—+0@A" , (3.150)

3.5 Closure Problem

3.5.1 Statement of the Problem

As was already said in the first chapter, large-eddy simulation is a technique
for reducing the number of degrees of freedom of the solution. This is done by
separating the scales in the exact solution into two categories: resolved scales
and subgrid scales. The selection is made by the filtering technique described
above.

The complexity of the solution is reduced by retaining only the large
scales in the numerical solution process, which entails reducing the number
of degrees of freedom in the solution in space and time. The information
concerning the small scales is consequently lost, and none of the terms that
* use these scales, i.e. the terms in u’ in the physical space and in (1 — G)
in the spectral space, can be calculated directly. They are grouped into the
subgrid tensor 7. This scale selection determines the level of resolution of the
mathematical model.

Nonetheless, in order for the dynamics of the resolved scales to remain
correct, the subgrid terms have to be taken into consideration, and thus have
to be modeled. The modeling consists of approximating the coupling terms
on the basis of the information contained in the resolved scales alone. The
modeling problem is twofold:

1. Since the subgrid scales are lacking in the simulation, their existence is
unknown and cannot be decided locally in space and time. The problem
thus arises of knowing if the exact solution contains, at each point in
space and time, any smaller scales than the resolution established by
the filter. In order to answer this question, additional information has
to be introduced, in either of two ways. The first is to use additional
assumptions derived from acquired knowledge in fluid mechanics to link
the existence of subgrid modes to certain properties of the resolved scales.
The second way is to enrich the simulation by introduc  new unknowns
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directly related to the subgrid modes, such as their kinetic energy, for
example.

2. Once the existence of the subgrid modes is determined, their interactions
with the resolved scales have to be reflected. The quality of the simulation
will depend on the fidelity with which the subgrid model reflects these
interactions.

Various modeling strategies and models that have been developed are
presented in the following.

Other techniques exist for minimizing the algorithmic complexity of the
simulation. One of them consists in optimizing the number of degrees of
freedom used for representing the flow by adapting the space-time resolution,
i.e. the space and time cutoff scales, to the structure of the solution in such
a way as to capture all the scales making it up. Among these techniques, we
may mention the methods of Incremental Unknowns [55, 90] and of Adaptive
Mesh Refinement (AMR) [275]. The choice here is the dual of the choice
on which large-eddy simulation is based: in AMR methods the resolution is
variable and all the scales are resolved, while for Large-eddy simulation the
cut-off scale determines the resolution and certain scales are parametrized.

All these approaches are confronted with the same problem of determining
the existence of unresolved scales. This point is crucial because it represents
a prerequisite for the application of a subgrid model or the enrichment of
the grid, and requires that indicators be determined. Let us recall that since
the exact solution is in theory unknown, these indictors incorporate informa-
tion external to the simulation in implicit form (assumption concerning the
solution) or explicit form (adding degrees of freedom).

These techniques can be interpreted as techniques for controlling the
dynamical system of finite dimension represented by the computed solution.
The subgrid models are then the actuators of the control loop.

3.5.2 Postulates

So far, we have assumed nothing concerning the type of flow at hand, aside
from those assumptions that allowed us to demonstrate the momentum and
continuity equations. Subgrid modeling usually assumes the following hy-
pothesis

Hypothesis 3.1. If subgrid scales exist, then the flow is locally (in space
and time) turbulent.

Consequently, the subgrid models will be built on the known properties
of the turbulence.

It should be noted that theories exist that use other basic hypotheses. We
may mention as an example the description of suspensions in the form of a
fluid with modified properties [178]: the solid particles are assumed to have
predefined charac ‘stics (mass, form, spatial distribution, and so forth) and
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have a characteristic size very much less than the filter cutoff length, i.e. at the
scale at which we want to describe the flow dynamics directly. Their actions
are taken into account globally, which means a very high saving compared
with an individual description of each particle. The different descriptions
obtained by homogenization techniques also enter into this framework.

3.5.3 Functional and Structural Modeling

Preliminary Remarks. Before discussing the various ways of modeling the
subgrid terms, we have to set some constraints in order to orient the choices
[285]. The subgrid modeling must be done in compliance with two constraints:

1. Physical constraint. The model must be consistent from the viewpoint of
the phenomenon being modeled, i.e.:
— Conserve the basic properties of the starting equation, such as Galilean
invariance;
— Be zero wherever the exact solution exhibits no small scales corre-
sponding to the subgrid scales; .
— Induce an effect of the same kind (dispersive or dissipative, for exam-
ple) as the modeled terms;
— Not destroy the dynamics of the solve scales, and thus especially not
inhibit the flow driving mechanisms.
2. Numerical constraint. A subgrid model can only be thought of as included
in a numerical simulation method, and must consequently:
— Be of acceptable algorithmic cost, and especially be local in time and
space;
— Not destabilize the numerical simulation;
— Be insensitive to discretization, 4.e. the physical effects induced theo-
retically by the model must not be inhibited by the discretization.

Modeling Strategies. The problem of subgrid modeling consists in taking
the interaction with the fluctuating field u’, represented by the term V - 7,
into account in the evolution equation of the filtered field W. Two modeling
strategies exist [285]:

= Structural modeling of the subgrid term, which consists in making the best
approximation of the tensor 7 by constructing it from an evaluation of T
or a formal series expansion. The modeling assumption therefore consists
in using a relation of the form v’ = H(W) or 7 = H(T).

— PFunctional modeling, which consists in modeling the action of the subgrid
terms on the quantity U and not the tensor 7 itself, i.e. introducing a
dissipative or dispersive term, for example, that has a similar effect but
not necessarily the same structure (not the same proper axes, for éxample).
The closure hypothesis can then be expressed in the form V - 7 = H ().
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These two modeling approaches do not require the same foreknowledge
of the dynamics of the equations treated and theoretically do not offer the
same potential in terms of the quality of results obtained.

The structural approach requires no knowledge of the nature of the inter-
scale interaction, but does require enough knowledge of the structure of the
small scales of the solution in order to be able to determine one of the relations
u' = H(¥) or 7. = H(TW) to be possible, one of the two following conditions
has to be met:

— The dynamics of the equation being computed leads to a universal form of
the small scales (and therefore to their total structural independence from
the resolved motion, as all that remains to be determined is their energy
level).

— The dynamics of the equation induces a sufficiently strong and simple inter-
scale correlation for the structure of the subgrid scales to be deduced from
the information contained in the resolved field.

As concerns the modeling of the inter-scale interaction by just taking
its effect into account, this requires no foreknowledge of the subgrid scale
structure, but does require knowing the nature of the interaction [81] {166].
Moreover, in order for such an approach to be practical, the effect of the small
scales on the large must be universal in character, and therefore independent
of the large scales of the flow.
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It would be illusory to try to describe the structure of the scales of motion
and the ‘interactions in all imaginable configurations, in light of the very
large disparity of physical phenomena encountered. So we have to restrict
this description to cases which by nature include scales that are too small
for today’s computer facilities to solve them entirely, and which are at the
same time accessible to theoretical analysis. This description will therefore
be centered on the inter-scale interactions in the case of fully developed
isotropic homogeneous turbulence®, which is moreover the only case accessible
by theoretical analysis and is consequently the only theoretical framework
used today for developing subgrid models. Attempts to extend this theory
" to anisotropic and/or inhomogeneous cases are discussed in Chap. 5. The
text will mainly be oriented toward the large-eddy simulation aspects. For
a detailed description of the isotropic homogeneous turbulence properties,
which are reviewed in Appendix A, the reader may refer to the works of
Lesieur [189] and Batchelor [17].

4.1 Phenomenology of Inter-Scale Interactions

It is important to note here the framework of restrictions that apply to the
results we will be presenting. These results concern three-dimensional flows
and thus do not cover the physics of two-dimensional flows (in the sense
of flows with two directions?, and not two-component® flows), which have
a totally different dynamics [168-170,188,216]. The modeling in the two-
dimensional case leads to specific models [14,282,283] which will not be

1 That is, whose statistical properties are invariant by translation, rotation, or
symmetry.

2 These are flows such that there exists a direction z for which we have the
property:

- Ju

550

3 These are flows such that there exists a framework in which the velocity field
has an identical” ero component.
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presented. For details on two-dimensional turbulence, the reader may also
refer to [189).

4.1.1 Local Isotropy Assumption: Consequences

In the case of fully developed turbulence, Kolmogorov’s statistical description
of the small scales of the flow, based on the assumption of local isotropy, has
been the one most used for a very long time.

By introducing the idea of local isotropy; Kolmogorov assumes that the
small scales belonging to the inertial range of the energy spectrum of a fully
developed inhomogeneous turbulent flow are:

— Statistically isotropic, and therefore entirely characterized by a character-
istic velocity and time;

— Without time memory, therefore in energy equilibrium with the large scales
of the flow by instantaneous re-adjustment.

This isotropy of the small scales implies that they are statistically inde-
pendent of the large energetic scales, which are characteristic of each flow
and are therefore anisotropic. Experimental work [234] has shown that this
assumption is not valid in shear flows for all the scales belonging to the
inertial area, but only for those whose size is of the order of the Kolmogorov
scale. Numerical experiments [10] show that turbulent stresses are nearly
isotropic for wave numbers k such that kL. > 50, where L. is the integral
dissipation length?. These experiments have also shown that the existence
of an inertial region does not depend on the local isotropy hypothesis. The
causes of this persistence of the anisotropy in the inertial range due to inter-
- actions existing between the various scales of the flow will be mentioned in
Chap. 5. Works based on direct numerical simulations have also shown that
the assumption of equilibrium between the resolved and subgrid scales may
be faulted, at least temporarily, when the flow is subject to unsteady forcing
[199,226,258,266]. This is due to the fact that the relaxation times of these
two scale ranges are different. In the case of impulsively accelerated flows
(plane channel, boundary layer, axisymmetric straining) the subgrid scales
react more quickly than the resolved ones, and then also relax more quickly
toward an equilibrium solution.

The existence of a zone of the spectrum, corresponding to the higher
frequencies, where the scales of motion are statistically isotropic, justifies the
study of the inter-modal interactions in the ideal case of isotropic homoge-
neous turbulence. Strictly speaking, the results can be used for determining

4 The integral dissipation length is defined as

(uiui>3/2

Le= 550

£ 3

where € is the energy dissipation rate.
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subgrid models only if the cutoff associated with the filter is in this region,
because the dynamics of the unresolved scales then corresponds well to that
of the isotropic homogeneous turbulence. It should be noted that this last
condition implies that the representation of the dynamics, while incomplete,
is nonetheless very fine, which theoretically limits the gain in complexity that
can be expected from large-eddy simulation technique.

Another point is that the local isotropy hypothesis is formulated for fully
developed turbulent flows at very high Reynolds numbers. As it affirms the
universal character of the small scales’ behavior for these flows, it ensures
the possibility using the large-eddy simulation technique strictly, if the filter
cutoff frequency is set sufficiently high. There is no theoretical justification,
though, for applying the results of this analysis to other flows, such as those
in transition.

4.1.2 Interactions Between Resolved and Subgrid Scales

In order to study the interactions between the resolved and subgrid scales,
we adopt an isotropic filter by a cutoff wave number k.. The subgrid scales
are those represented by the k modes such that & > k..

In the case of fully developed isotropic homogeneous turbulence, the sta-
tistical description of the inter-scale interactions is reduced to that of the
kinetic energy transfers. Consequently, only the information associated with
the amplitude of the fluctuations is conserved, and none concerning the phase
is taken into account.

These transfers are analyzed using several tools:

— Analytical theories of turbulence, also called two-point closures, which de-
scribe triadic interactions on the basis of certain assumptions. They will
therefore express the non- linear term S(k|p, q), defined by relation (3.48)
completely. For a description of these theories, the reader may refer to
Lesieur’s book [189], and we also mention Waleffe’s analysis [342, 343],
certain conclusions of which are presented in the following.

— Direct numerical simulations, which provide a complete description of the
dynamics.

Typology of the Triadic Interactions. It appears from the developments
of Sect. 3.1.2 (also see Appendix A) that the U(k) mode interacts only with
those modes whose wave vectors p and q form a closed triangle with k. The
wave vector triads (k, p, q) thus defined are classified in several groups [369)
which are represented in Fig. 4.1:

— Local triads for which

1 P q
- SmaX{E,E} <a, a=0(1) ,
which correspond to interactions among wave vectors of neighboring mod-
ules, and therefore to interactions among scales of slightly different sizes;
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k

LOCAL TRIAD NON-LOCAL TRIAD DISTANT TRIAD
Fig. 4.1. Different types of triads.

— Non-local triads, which are all those interactions that do not fall within the
first category, i.e. interactions among scales of widely differing sizes. Here,
we adopt the terminology proposed in [35], which distinguishes between
two sub-classes of non-local triads, one being distant triads of interactions
in which k < p ~ g or k ~ ¢ > p . It should be noted that these terms
are not unequivocal, as certain authors [189,192] refer to these “distant”
triads as being just “non-local”.

By extension, a phenomenon will be called local if it involves wave vectors
k and p such that 1/a < p/k < a, and otherwise non-local or distant.

Canonical Analysis. This section presents the results from analysis of the
simplest theoretical case, which we call here canonical analysis. This consists
~ of assuming the following two hypotheses:

1. Hypothesis concerning the flow. The energy spectrum E(k) of the exact
solution is a Kolmogorov: spectrum, i.e.

E(k) = Koe?/?k™5/3,  kel0,00] , (4.1)

where Ky is the Komogorov constant and & the kinetic energy dissipa-
tion rate. We point out that this spectrum is not integrable since its
corresponds to an infinite kinetic energy.

2. Hypothesis concerning the filter. The filter is a sharp cutoff type. The
subgrid tensor is thus reduced to the subgrid Reynolds tensor.

In analyzing the energy transfers Tg,s(k) (see relation (3.49)) between the
modes to either side of a cutoff wave number k. located in the inertial range of
the spectrum, Kraichnan [170] uses the Test Field Model (TFM) to bring out
the existence of two spectral bands (see Fig. 4.2) for which the interactions
with the small scales (p and/or g > k¢ ) are of different kinds.
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- E(k) zone 1 zone 2

Subgrid modes

k. /3 ke k
Fig. 4.2. Interaction regions between resolved and subgrid scales.

1. In the first region (1 in Fig. 4.2), which corresponds to the modes such
that k < ke, the dominant dynamic mechanism is a random displacement
of the momentum associated with k by disturbances associated with
p and q. This phenomenon, analogous to the effects of the molecular
viscosity, entails a kinetic energy decay associated with k and, since the
total kinetic energy is conserved, a resulting increase of it associated with
p and q. So here it is a matter of a non-local transfer of energy associ-
ated with non-local triadic interactions. These transfers, which induce a
damping of the fluctuations, are associated with what Waleffe [342, 343]
classifies as type F triads (represented in Fig. 4.3).

""""" = KINETIC ENERGY TRANSFER

Fig. 4.3. Non-local triad (k,p, q) of the I type according to Waleffe’s classifica-
tion, and the associated non-local energy transfers. The kinetic energy of the mode
corresponding to the smallest wave vector k is distributed to the other two modes
p and g, creating " “.ward energy cascade in the region where k < ke.
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--------- = KINETIC ENERGY TRANSFER

Fig. 4.4. Non-local (k, p, q) triad of the R type according to Waleffe’s classification,
and the associated energy transfers in the case g K ke. The kinetic energy of the
mode corresponding to the intermediate wave vector k is distributed locally to the
largest wave vector p and non-locally to the smallest wave vector, q. The former
transfer originates the intensification of the coupling in the (ke — k) < ke spectral
band, while the latter originates the backward kinetic energy cascade.

Subsequent analyses using the Direct Interaction Approximation (DIA)
and the Eddy Damped Quasi-Normal Markovian (EDQNM) models [54,
61,192,193] or Waleffe’s analyses [342,343] have refined this represen-
tation by showing the existence of two competitive mechanisms in the
region where k < k.. The first region is where the energy of the large
scales is drained by the small, as already shown by Kraichnan. The second
mechanism, of much lesser intensity, is a return of energy from the small
scales p and q to the large scale k . This mechanism also corresponds to
a non-local energy transfer associated with non-local triadic interactions
that Waleffe classifies as type R (see Fig. 4.4). Tt represents a backward
stochastic energy cascade associated with an energy spectrum in k? for
very small wave numbers. This phenomenon has been predicted ana-
lytically [192] and verified by numerical experimentation [54,191]. The
analytical studies and numerical simulations show that this backward
cascade process is dominant for very small wave numbers. On the average,
these modes receive more energy from the subgrid modes than they give
to them.

2. In the second region (region 2 in Fig. 4.2), which corresponds to the k
modes such that (k. —k) < k. , the mechanisms already present in region
1 persist. The energy transfer to the small scales is at the origin of the
forward kinetic energy cascade.

Moteover, another mechanism appears involving triads such that p or
q < ke, which is that the interactions between the scales of this region
and the subgrid scales are much more intense than in the first. Let us take
g < k. This mechanism is a coherent straining of the small scales k and
p by the shear associated with q, resulting in a wave number diffusion
process between k and p through the cutoff, with one of the structures be-
ing stretched (vortex stretching phenomenon) and the other unstretched.

4.1 Phenomenology of Inter-Scale Interactions 69

Wekat we are observing here is a local energy transfer between k and p
associated with non-local triadic interactions due to the type R triads
(see Fig. 4.4). Waleffe refines the analysis of this phenomenon: a very
large part of the energy is transferred locally from the intermediate
wave number located just ahead of the cutoff toward the larger wave
number just after it, and the remaining fraction of energy is transferred
to the smaller wave number. These findings have been corroborated by
numerical data [54,82,84] and other theoretical analyses [61,193].

The energy transfers Tg, (k) (see relation (3.49)) between mode k and
the subgrid modes can be represented in a form analogous to molecular
dissipation, To do this, by following Heisenberg (see [317] for a description of
Heisenberg’s theory), we define an effective viscosity ve(k|k.), which repre-
sents the energy transfers between the k mode and the modes located beyond
the k. cutoff such that:

TS (F) = ~2v (kR E(R) . (42)

It should be pointed out that this viscosity is real, i.e. vo(klk.) € IR,
and that if any information related to the phase were included, it would lead
the definition of a complex term having an a priori non-zero imaginary part,
which may seem to be more natural for representing a dispersive type of
coupling. Such a term is obtained not by starting with the kinetic energy
equation, but with the momentum equation®.

The two energy cascades, forward and backward, can be introduced sepa-
rately by introducing distinct effective viscosities, constructed in such a way
as to ensure energy transfers equivalent to those of these cascades. We get
the following two forms:

| T (ke )

V:(klkcﬁ) = 2Bk (4.3)
vy (klke, t) = Tigs(blke, 1) (4.4)

KBk, )
in which Tt

sgs(Flkc, t) (resp. Togs(klke,t)) is the energy transfer term from the
k mode to the subgrid modes (resp. from the subgrid modes to the k mode).
This leads to the decomposition:

Tgs(K)

sgs

ngs(klkc’t) + iZﬂs—g—s(l":lk’lc’t) (45)
—2k*E(k, t) (v (klke, t) + v7 (Klke, 1)) . (4.6)

I

5 This possibility is only mentioned here, because no works have been published
on it to date.
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These two viscosities depend explicitly on the wave number k and the
cutoff wave vector k¢, as well as the shape of the spectrum. The result of
these dependencies on the flow is that the viscosities are not, because they
characterize the flow and not the fluid. They are of opposite sign: v} (k|ke, t)
ensures a loss of energy of the resolved scales and is consequently positive,
like the molecular viscosity, whereas v (k|k.,t), which represents an energy
gain in the resolved scales, is negative.

The conclusions of the theoretical analyses [170,193] and numerical stud-
ies [54] are in agreement on the form of these two viscosities. Their behavior
is presented in Fig. 4.5 in the canonical case.
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Fig. 4.5. Representation of effective viscosities in the canonical case. — Short dashes:
v (k|ke, t); long dashes: —vg (klke, t); solid: v (klke,t) + ve (klke, t).

We may note that these two viscosities become very high for wave numbers
close to the cutoff. These two effective viscosities diverge as (ko — k)™%/® as
k tends toward k.. However, their sum ve(k|kc, ¢) remains finite and Leslie et
al. [193] proposes the estimation:

Vo(ke|ke, t) = 5.24v (0lke, t) . (4.7)

The interactions with the subgrid scales is therefore especially important
in the dynamics of the smallest resolved scales. More precisely, Kraichnan’s
theoretical analysis leads to the conclusion that about 7 of the energy

4.1 Phenomenology of Inter-Scale Interactions 71

transfers of a k mode occur with the modes located in the [k/2, 2k] spectral
band. No transfers outside this spectral band have been observed in direct
numerical simulations at low Reynolds numbers [82, 368, 369]. The difference
with the theoretical analysis stems from the fact that this analysis is per-
formed in the limit of the infinite Reynolds numbers.

In the limit of the very small wave numbers, we have the asymptotic
behaviors:

22 E(k, )7 (klke,t) o< K3 (4.8)
K2 E(k, t)v7 (klke,t) o< k* (4.9)

The effective viscosity associated with the energy cascade takes the con-
stant asymptotic value:

vt (0|ke, t) = 0.2026Y/3k 743 (4.10)

Dependency According to the Filter. Leslie and Quarini (193] extended
the above analysis to the case of the Gaussian filter. The spectrum considered
is always of the Kolmogorov type. The Leonard term is now non-zero. The
results of the analysis show very pronounced differences from the canonical
analysis. Two regions of the spectrum are still distinguishable, though, with
regard to the variation of the effective viscosities v and v, which are shown
in Fig. 4.6:

— In the first region, where k < kc, the transfer terms still observe a constant
asymptotic behavior, independent of the wave number considered, as in the
canonical case. The backward cascade term is negligible compared with the
forward cascade term. ‘

— In the second region, on the other hand, when approaching cutoff, the two
transfer terms do not have divergent behavior, contrary to what is observed
in the canonical case. The forward cascade term decreases monotonically
and cancels out after the cutoff for wave numbers more than a decade
beyond it. The backward cascade term increases up to cutoff and exhibits
a decreasing behavior analogous to that of the forward cascade term. The
maximum intensity of the backward cascade is encountered for modes just
after the cutoff.

In contrast to the sharp cutoff filter used for the canonical analysis, the
Gaussian filter makes it possible to define Leonard terms and non-identically
zero cross terms. The effective viscosity associated with these terms is shown
in Fig. 4.7, where it can be seen that it is negligible for all the modes more
than a decade away from the cutoff. In the same way as for the backward
cascade term, the maximum amplitude is observed for modes located just
after the cutoff. This term remains smaller than the forward and backward
cascade terms for all the wavenumbers.
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Fig. 4.6. Effective v1scosmes in the application of a Ga,uSSIan filter to a Kolmogorov
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Fig. 4.7. Effective viscosity corresponding to the Leonard term in the case of the
application of a Gaussian filter to a Kolmogorov spectrum.
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Dependency According to Spectrum Shape. The results of the canoni-
cal analysis are also dependent on the shape of the spectrum considered. The
analysis is repeated for the case of the application of the sharp cutoff filter
to a production spectrum of the form:

E(k) = As(k/kp) Koe®*k=5/% | (4.11)
with
z5+5/3
As(z) = T4 o5 (4.12)

and where k; is the wave number that corresponds to the maximum of the
energy spectrum [193]. The shape of the spectrum thus defined is illustrated
in Fig. 4.8 for several values of the s parameter.

The variation of the total effective viscosity v, for different values of the
quotient k. /ky, is diagrammed in Fig. 4.9. For low values of this quotient, i.e.
when the cutoff is located at the beginning of the inertial range, we observe
that the viscosity may decrease at the approach to the cutoff, while it is
strictly increasing in the canonical case. This difference is due to the fact
that the asymptotic reasoning that was applicable in the canonical case is
no longer valid, because the non-localness of the triadic interactions involved
relay the difference in spectrum shape to the whole of it. For higher values of
this quotient, i.e. when the cutoff is located sufficiently far into the inertial
range (for large values of the ratio k./k,), a behavior that is qualitatively
similar to that observed in the canonical case is once again found®.

S1In practice, kc/kp=8 seems appropriate.

10 f J T T T M T y L

0.1

0.01

E(k)

0.001 |/

0.0001 £

T P S SIS [
1 10 00 1000 10000 100000

Fig. 4.8. Production spectrum for different values of the shape parameter s.
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Fig. 4.9. Total effective viscosity ve(k|kc) in the case of the application of a sharp
cutoff filter to a production spectrum for different values of the quotient kc/kp,
normalized by its value at the origin.

For k. = kyp, no increase is observed in the energy transfers as & tends to-
ward k.. The behavior approximates that observed for the canonical analysis
as the ratio k,/k. decreases.

4.1.3 A View in Physical Space

Analyses described in the preceding section were all performed in the Fourier
space, and do not give any information about the location of the subgrid
transfer in the physical space and its correlation with the resolved scale fea-
tures’. Complementary informations on the subgrid transfer in the physical
space have been found by several authors using direct numerical simulation.
Kerr et al. [166] propose to use the rotational form of the non-linear term of
the momentum equation:

N(z) = u(z) x w(z) — Vpr(z) (4.13)
where w = V x u and p;, the pressure term. By splitting the velocity and
vorticity field into a resolved and a subgrid contribution, we get:

7 This is a prerequisite for designing functional subgrid mode  physical space.
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UXWw—TXW=Txw+u xw+u xw . (4.14)
N N e Nyt S e et
1 i1 11 v

The four terms represent different coupling mechanisms between the re-
solved motion and the subgrid scales:

— I - exact subgrid term,

— II - interaction between resolved velocity and subgrid vorticity,
— III - interaction between subgrid velocity and resolved vorticity,
— IV - interaction between subgrid velocity and subgrid vorticity.

The corresponding complete non-linear terms N, ..., NV are built by
adding the, specific pressure term The associated subgrld kinetic energy
transfer terms are computed as e = T-N'. The authors made three significant
observations for isotropic turbulence:

— Subgrid kinetic energy transfer is strongly correlated with the boundaries of
regions of large vorticity production (stretching), i.e. regions where 0;54;0;
is large;

— Term II, T X w', has a correlation with subgrid non-linear term I up to 0.9.
This term dominates the backward energy cascade;

— Up to 90 % of the subgrid kinetic energy transfer comes from term III, i.e. -
from the interaction of subgrid velocity with resolved vorticity. This term
mostly contributes to the forward energy cascade.

Additional results of Borue and Orszag [33] show that the subgrid transfer
takes place in regions where the vorticity stretching term is positive or 1n
regions with negative skewness of the resolved strain rate tensor, ’IT(S ).
These authors also found that there is only a very poor local correlation
between the subgrid transfer 7;;S;; and the local strain S;;S;;, where Sy; is
the resolved strain rate tensor.

4.1.4 Sum”mary

The different analyses performed in the framework of fully developed isotropic
turbulence show that:

1. Interactions between the small and large scales is reflected by two main
mechanisms:
— A drainage of energy from the resolved scales by the subgrid scales
(forward energy cascade phenomenon);
— A weak feedback of energy, proportional to k* to the resolved scales
(backward energy cascade phenomenon).
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2. The interactions between the subgrid scales and the smallest of the re-
solved scales depend on the filter used and on the shape of the spectrum.
In certain cases, the coupling with the subgrid scales is strengthened
for wave numbers close to the cutoff and the energy toward the subgrid
modes is intensified.

3. These cascade mechanisms are associated to specific features of the ve-
locity and vorticity field in physical space.

4.2 Basic Functional Modeling Hypothesis

All the subgrid models entering into this category make more or less implicit
use of the following hypothesis:

Hypothesis 4.1. The action of the subgrid scales on the resolved scales is
essentially an energetic action, so that the balance of the energy transfers
alone between the two scale ranges is sufficient to describe the action of the
subgrid scales.

Using this hypothesis as a basis for modeling, then, we neglect a part of the
information contained in the small scales, such as the structural information
related to the anisotropy. As was seen above, the energy transfers between
subgrid scales and resolved scales mainly exhibit two mechanisms: a forward
energy transfer toward the subgrid scales and a backward transfer to the
resolved scales which, it seems, is much weaker in intensity. All the approaches
existing today for numerical simulation at high Reynolds numbers consider

the energy lost by the resolved scales, while only a few rare attempts have -

been made to consider the backward energy cascade.

Once hypothesis 4.1 is assumed, the modeling consists in modifying the
different evolution equations of the system in such a way as to integrate the
desired dissipation or energy production effects into them. To do this, two
different approaches can be found in today’s works:

— Ezplicit modeling of the desired effects, i.e. including them by adding ad-
ditional terms to the equations: the actual subgrid models;

— Implicit inclusion by the numerical scheme used, by arranging it so the
truncation error induces the desired effects.

Let- us note that while the explicit approach is what would have to be
called the classical modeling approach, the implicit one appears generally
only as an a posteriori interpretation of dissipative properties for certain
numerical methods used.
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4.3 Modeling of the Forward Energy Cascade Process

This section describes the main functional models of the energy cascade
mechanism. Those derived in the Fourier space, conceived for simulations
based on spectral numerical methods, and models derived in the physical
space, suited to the other numerical methods, are presented separately.

4.3.1 Spectral Models

The models belonging to this category are all effective viscosity models draw-
ing upon the analyses of Kraichnan for the canonical case presented above.
The following models are described:

1. The Chollet-Lesieur model (p.78) which, based on the results of the
canonical analysis (inertial range of the spectrum with a slope of —5/3,
sharp cutoff filter, no effects associated with a production type spectrum)
yields an analytical expression for the effective viscosity as a function of
the wave number considered and the cutoff wave number. It will reflect
the local effects at the cutoff, i.e. the increase in the energy transfer
toward the subgrid scales. This model explicitly brings out a dependency
of the effective viscosity as a function of the kinetic energy at the cutoff.
This guarantees that, when all the modes of the exact solution are re-
solved, the subgrid model automatically cancels out. The fact that this
information is local in frequency allows the model to consider (at least
partially) the spectral disequilibrium phenomena that occur at the level of
the resolved scales®, though without relaxing the hypotheses underlying
the canonical analysis. Only the amplitude of the transfers is variable,
and not their pre-supposed shape.

2. The effective viscosity model (p.79), which is a simplification of the pre-
vious one and is based on the same assumptions. The effective viscosity
is then independent of the wave number and is calculated so as to ensure
the same average value as the Chollet-Lesieur model. It is simpler to
compute, but does not reflect the local effects at the cutoff.

3. The dynamic spectral model (p.79), which is an extension of the Chollet—
Lesieur model for spectra having a slope different from that of the canon-
ical case (i.e. —5/3). Richer information is considered here: while the
Chollet-Lesieur model is based only on the energy level at the cutoff,
the dynamic spectral model also incorporates the spectrum slope at the
cutoff. With this improvement, we can cancel the subgrid model in cer-
tain cases for which the kinetic energy at cutoff is non-zero but where
the kinetic energy transfer to the subgrid modes is zero®. This model

8 This is by their action on the transfers between resolved scales and the variations

induced on the energy level at cutoff.
9 As is the case, for example, for two-dimensional flows.
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4/3
v (klke) = vo(klkm, ko) E’(“;C)H:(O) (’%) . (4.23)

The factor v (0) is evaluated by considering that we have the relations

vl (klkm) = vF(0),  velklkm, ko) = ve(Olkm, ke) (4.24)
for k < ky,, which leads to:
-1

4/3
vd (0) = ve(Olkim, kic)y E’EZC) 1- (%ﬁ) } : (4.25)

Models Based on Analytical Theories of Turbulence. The effective
viscosity models presented above are all based on an approximation of the

effective viscosity profile obtained in the canonical case, and are therefore

intrinsically linked to the underlying hypotheses, especially those concerning
the shape of the energy spectrum. One way of relaxing this constraint is to
compute the effective viscosity directly from the computed spectrum using
analytical theories of turbulence. This approach has been used by Aupoix [7],
Chollet [57, 58], and Bertoglio [21-23].

More recently, following the recommendations of Leslie and Quarini, which -

are to model the forward and backward cascade mechanisms separately, Chas-
nov [54] in 1991 proposed an effective viscosity model considering only the
energy draining effects, with the backward cascade being modeled separately
(see Sect. 4.4). Starting with an EDQNM analysis, Chasnov proposes com-
puting the effective viscosity ve(k|k.) as:

1

Ue(klkc) = 2_]{;2

[e’s} ¥4 2 . 2
/kc dp /p_k dqOkpq (%(my + 2*)E(q) + %(m + y3)E(p)) ,
(4.26)

in which z,y and z are geometric factors associated with the (k, p,q) triads
and Opp, a relaxation time. These terms are explained in Appendix B. To
compute this integral, the shape of the energy spectrum beyond the cutoff k¢
must be known. As it is not known a priori, it must be specified elsewhere.
In practice, Chasnov uses a Kolmogorov spectrum extending from the cutoff
to infinity. To simplify the computations, the relation (4.26) is not used
outside the interval [k, < p < 3kc]. For wave numbers p > 3k, the following
simplified asymptotic form already proposed by Kraichnan is used:

velilke) = = /kwdpekm (5E<p)+p—"’§%) L a2
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4.3.2 Physical Space Models

Subgrid Viscosity Concept. The forward energy cascade mechanism to
the subgrid scales is modeled explicitly using the following hypothesis:

Hypothesis 4.2. The energy transfer mechanism from the resolved to the
subgrid scales is analogous to the molecular mechanisms represented by the
diffusion term, in which the viscosity v appears.

This hypothesis is equivalent to assuming that the behavior of the subgrid
scales is analogous to the Brownian motion superimposed on the motion of
the resolved scales. In gaskinetics theory, molecular agitation draws energy
from the flow by way of molecular viscosity. So the energy cascade mechanism
will be modeled by a term having a mathematical structure similar to that
of molecular diffusion, but in which the molecular viscosity will be replaced
by a subgrid viscosity denoted vggs. As Boussinesq proposed, this choice of
mathematical form of the subgrid model is written:

—V-1 =V (vg(VEa+ VTT) (4.28)
in which 79 is the deviator of T, i.e.:

d 1

Tij = ’ng — gv-kkéij . (429)
The complementary spherical tensor %Tkk(ﬁj is added to the filtered static

pressure term and consequently requires no modeling. This decomposition is
necessary since the tensor (Vi + V7u) has a zero trace, and we can only
model a tensor that also has a zero trace. This leads to the definition of the
modified pressure II:

1 :
II=p+ ‘?;Tkk . (4.30)

It is important to note that the modified pressure and filtered pressure
P may take very different values when the generalized subgrid kinetic en-
ergy becomes large [163]. The closure thus now consists in determining the
relation:

Vsgs = N(T) . (4.31)

The use of hypothesis (4.2) and of a model structured as above calls for
a few comments.

Obtaining a scalar subgrid viscosity requires the adoption of the following
hypothesis:

Hypothesis 4.3. A characteristic length lo and a characteristic time ty are
sufficient for describing the subgrid scales.
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Then, by dimensional reasoning similar to Prandtl’s, we arrive at:

i3
ngs o %

Models of the form (4.28) are local in space and time, which is a necessity
if they are to be used in practice. This local character, similar to that of the
molecular diffusion terms, implies [9, 170, 370]:

(4.32)

Hypothesis 4.4 (Scale Separation Hypothesis). There ezists o tolal
separation between the subgrid and resolved scales.

A spectrum verifying this hypothesis is presented in Fig. 4.10.

E(k)

k. k

Fig. 4.10. Energy spectrum corresponding to a total scale separation for cutoff
wave number kc.

Using Lo and Ty to denote the characteristic scales, respectively, of the
resolved field in space and time, this hypothesis can be reformulated as:

lo to
— 1 — 1. 4.
<L < (4.33)
This hypothesis is verified in the case of molecular viscosity. The ratio
between the size of the smallest dynamically active scale, 7k, and the mean
free path &, of the molecules of a gas is evaluated as:

fp o Ma
K T Rell/d
where Ma is the Mach number, defined as the ratio of the fluid velocity

to the speed of sound, and Re the Reynolds number [326]. In most of the
cases encountered, this ratio is less than 103, which ensu ™ the pertinence

(4.34)
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of using a continuum model. For applications involving rarefied gases, this
ratio can-take on much higher values of the order of unity, and the Navier—
Stokes equations are then no longer an adequate model for describing the
fluid dynamics.

Filtering associated to large-eddy simulation does not introduce such a
separation between resolved and subgrid scales because the turbulent energy
spectrum is continuous. The characteristic scales of the smallest resolved
scales are consequently very close to those of the largest subgrid scales'®. This
continuity originates the existence of the spectrum region located near the
cutoff, in which the effective viscosity varies rapidly as a function of the wave
number. The result of this difference in nature with the molecular viscosity is
that the subgrid viscosity is not a characteristic of the fluid but of the flow.
Let us not that Yoshizawa [357,359], using a re-normalization technique,
has shown that the subgrid viscosity is defined as a fourth-order non-local
tensor in space and time, in the most general case. The use of the scale
separation hypothesis therefore turns out to be indispensable for constructing
local models, although it is contrary to the scale similar hypothesis of Bardina
et al. [13], which is discussed in Chap. 6.

The modeling problem consists in determining the characteristic scales lo
and tg.

Model Types. The subgrid viscosity models can be classified in three cat-
egories according to the quantities they bring into play [9]:

1. Models based on the resolved scales (p.85): the subgrid viscosity is evalu-
ated using global quantities related to the resolved scales. The existence of
subgrid scales at a given point in space and time will therefore be deduced
from the global characteristics of the resolved scales, which requires the
introduction of assumptions. ‘

2. Models based on the energy at the cutoff (p.87): the subgrid viscosity is
calculated from the energy of the highest resolved frequency. Here, it is
a matter of information contained in the resolved field, but localized in
frequency and therefore theoretically more pertinent for describing the
phenomena at cutoff than the quantities that are global and thus not
localized in frequency, which enter into the models of the previous class.
The existence of subgrid scales is associated with a non-zero value of the
energy at cutoff*!.

10 This is all the more true for smooth filters such as the Gaussian and box filters,
which allow a frequency overlapping between the resolved and subgrid scales.
This hypothesis is based on the fact that the energy spectrum E(k) of an isotropic
turbulent flow in spectral equilibrium corresponding to a Kolmogorov spectrum
is a monotonic continuous decreasing function of the wave number k. If there
exists a wave number &* such that E(k*) = 0, then E(k) = 0, Vk > k*. Also, if
the energy is non-zero at the cutoff, then subgrid modes exist, i.e. if E(kc) #0,
then there exists a neighbourhood 2, = [ke, ke + €c]; €c > 0 such that E(ke) >
E(k) > 0VEk € Q.

i1
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3. Models based on the subgrid scales (p.88), which use information directly
related to the subgrid scales. The existence of the subgrid scales is no
longer determined on the basis of assumptions concerning the charac-
teristics of the resolved scales as it is in the previous cases, but rather
directly from this additional information. These models, because they are
richer, also theoretically allow a better description of these scales than
the previous models. ‘

These model classes are presented in the following. All the developments
are based on the analysis of the energy transfers in the canonical case. In
order to be able to apply the models formulated from these analyses to more
realistic flows, such as the homogeneous isotropic flows associated with a
production type spectrum, we adopt the assumption that the filter cutoff
frequency is located sufficiently far into the inertial range for these analyses
to remain valid (refer to Sect. 4.1.2). The use of these subgrid models for
arbitrary developed turbulent flows (anisotropic, inhomogeneous) is justified
by the local isotropy hypothesis: we assume then that the cutoff occurs in
the scale range that verifies this hypothesis. _

"The case corresponding to an isotropic homogeneous flow associated with
a production spectrum is represented in Fig. 4.11. Three energy fluxes are
defined: the injection rate of turbulent kinetic energy into the flow by the
driving mechanisms (forcing, instabilities), denoted er; the kinetic energy
transfer rate through the cutoff, denoted & and the kinetic energy dissipation
rate by the viscous effects, denoted &.

&

E(k)‘ W

ke V «
Fig. 4.11. Dynamics of the kinetic energy in the spectral space. The energy is
injected at the rate e7. The transfer rate through the cutoff, located wave number

ke, is denoted €. The dissipation rate due to viscous effects is denoted . The local
equilibrium hypothesis is expressed by the equality e; = & = €.
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Models Based: on the Resolved Scales. These models are of the generic form:

~

Vggs = Vsgs (Z, g) s (435)

in which A is the characteristic cutoff length of the filter and & the instan-
taneous energy flux through the cutoff. We implicitly adopt the assumption
here, then, that the subgrid modes exist, i.e. that the exact solution is not
entirely represented by the filtered field when this flux is non-zero.

First Method. Simple dimensional analysis shows that:

Vegs o E/3AY? (4.36)

Reasoning as in the framework of Kolmogorov’s hypotheses for isotropic
homogeneous turbulence, for the case of an infinite inertial spectrum of the
form '

B(k) = Ko )"k, Ko~ 14 (4.37)
in which ¢ is the kinetic energy dissipation rate, we get the equation:

A —
(ngs) — W<§)1/3 A4/3
in which the constant A is evaluated as A = 0.438 with the TFM model
and as A = 0.441 by the EDQNM theory [9]. The angle brackets operator
(), designates a statistical average. This statistical averaging operation is
intrinsically associated with a spatial mean by the fact of the flow’s spatial
homogeneity and isotropy hypotheses. This notation is used in the following
to symbolize the fact that the reasoning followed in the framework of isotropic
homogeneous turbulence applies only to the statistical averages and not to
the local values in the physical space. The problem is then to evaluate the
average flux (€). In the isotropic homogeneous case, we have:

(4.38)

C _ ke
- @F?) = (25,5,;) = /0 Wb, k=T . (439)

If the cutoff k. is located far enough into the inertial range, the above
relation can be expressed solely as a function of this region’s characteristic
quantities. Using a spectrum of the shape (4.37), we get:

~=—4/3

2[5P) = 7r4/3Kog (€)*/3 4 (4.40)
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Using the hypothesis'? [194] :

(ISP = (1S3 (4.41)
we get the equality:
1 (3K 2, -
<e>=-7r~2(70> A% (251232 . (4.42)

In order to evaluate the dissipation rate (¢) from the information con-
tained in the resolved scales, we assume the following:

Hypothesis 4.5 (Local Equilibrium Hypothesis). The flow is in con-
stant spectral equilibrium, so there is no accumulation of energy at any fre-
quency and the shape of the energy spectrum remains invariant with time.

This implies an instantaneous adjustment of all the scales of the solution
to the turbulent kinetic energy production mechanism, and therefore equality
between the production, dissipation, and energy flux through the cutoff:

(ery=(€) ={e) - ‘ (4.43)
Using this equality and relations (4.38) and (4.42), we get the closure
relation:

(vses) = (CA)” ISP, (4.44)
where the constant C is evaluated as:
—~1/4
o= YA (%—9> ~0.148 . (4.45)
s KO 2

Second Method. The local equilibrium hypothesis allows:

<5> = <€> = <—§ij7-ij> = <ngs2§z'j§ij> . (446)

The idea is then to assume that:

(vegs25ijS5) = (Vegs)(254545) (4.47)
By stating at the outset that the subgrid viscosity is of the form (4.44)
and using relation (4.40), a new value is found for the constant C:

-3/4
C= l <~3—[&> ~0.18 . (4.48)
T 2

We note that the value of this constant is independent of the cutoff
wave number k¢, but because of the way it is calculated, we can expect a
dependency as a function of the spectrum shape.

12 The error margin measured in direct numerical simulations Qf isotropic homoge-
neous turbulence is of the order of 20 % {229].
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Altemate Form. This modeling induces a dependency as a function of the
cutoff length A and the strain rate tensor S of the resolved velocity field. In
the isotropic homogeneous case, we have the equality:

@IS =W w), e=Vxua . (4.49)
By substitution, we get the equivalent form [218]:

(vogs) = (CA) (@ - @)1/2 . (4.50)

These two versions bring in the gradients of the resolved velocity field.
This poses a problem of physical consistency since the subgrid viscosity is
non-zero as soon as the velocity field exhibits spatial variations, even if it is
laminar and all the scales are resolved. The hypothesis that links the existence
of the subgrid modes to that of the mean field gradients therefore prevents
us from considering the large scale intermittency and thereby requires us
to develop models which by nature can only be effective for dealing with
flows that are completely turbulent and under-resolved everywhere's. Poor
behavior can therefore be expected when treating intermittent or weakly
developed turbulent flows (4.e. in which the inertial range does not appear in
the spectrum) due to too strong an action by the model.

Models Based on the Energy at Cutoff. The models of this category are based
on the intrinsic hypothesis that if the energy at the cutoff is non-zero, then
subgrid modes exist.

First Method. Using relation (4.38) and supposing that the cutoff occurs
within an inertial region; ¢.e.:

E(ke) = Ko (€)** k57, (4.51)

by substitution, we get:

‘ A [E(k)
(ng8>—\/——F—0 —k‘c

This model raises the problem of determining the energy at the cutoff in
the physical space; but on the other hand ensures that the subgrid viscosity
will be null if the flow is well resolved, i.e. if the highest-frequency mode
captured by the grid is zero. This type of model thus ensures a better physical
consistency than those models baséd on the large scales. It should be noted
that it is equivalent to the spectral model of constant effective viscosity.

Jk=n/A . (4.52)

13 I1i the sense that the subgrid modes exist at each point in space and at each time
step.
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Second Method. As in the case of models based on the large scales, there is a
second way of determining the model constant. By combining relations (4.46)
and (4.51), we get:

2 E(k)
3Kg/2 ke

(Vegs) = (4.53)

Models Based on Subgrid Scales. Here we considers models of the form:

(ngs> = <ngs> (Zv <QS2gS>7 <5>) s (4'54)

in which <q§gs> is the kinetic energy of the subgrid scales and (¢) the kinetic
energy dissipation rate*. These models contain more information about the
subgrid modes than those belonging to the two categories described above,
and thereby make it possible to do without the local equilibrium hypothesis
(4.5) by introducing characteristic scales specific to the subgrid modes by
way of (qus) and (g). This capacity to handle the energy disequilibrium is
expressed by the relation:

@ = (~7:;85) # ) (4.55)

which should be compared with (4.43). In the case of an inertial range ex-
tending to infinity beyond the cutoff, we have the relation:

11— i 3
() = ) = | B = SRR o)
from which we deduce:

ke

(e) = W(qggs>3/2 . (4.57)

By introducing this last equation into relation (4.38), we come to the
general form:

<USgS> = Oa <6>a/3 (qs2gs>(1_a)/221+a/3 3 (458)
in which
A 3K0 (/2 1—-a)/3
Ca = KontFs (7) miet (459)

and in which « is a real weighting parameter. Interesting forms of Vsgs have
been found for certain values:

1 Other models are of course possible using other subgrid scale quantities like a
length or time scale, but we limit ourselves here to classes of models for which
practical results exist.
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— For a =1, we get

A —4/3, 4
(ngs> = WA <€> Al (4'60)
This form uses only the dissipation and is analogous to that of the models
based on the resolved scales. If the local equilibrium hypothesis is used,
these two types of models are formally equivalent.
— For a =0, we get

(vags) = \/gé‘vz (@) (4.61)

This model uses only the kinetic energy of the subgrid scales. As such,
it is formally analogous to the definition of the diffusion coefficient of an
ideal gas in the framework of gaskinetics theory. In the case of an inertial
spectrum extending to infinity beyond the cutoff, this model is strictly
equivalent to the model based on the energy at cutoff, since in this precise
case we have the relation:

3
5kcE(kC) = (2. . (4.62)
~ For ae = —3, we have:

A ((g3)"
<vsgs>=;703£<q<—§>>)— . (4.63)

This model is formally analogous to the k—e statistical model of turbulence
for the Reynolds Averaged Navier-Stokes equations, and does not bring in
the filter cutoff length explicitly.

The closure problem consists in determining the quantities (¢) and (qszgs).
To do this, we can introduce one or more equations for the evolution of
these quantities or we can deduce them from the information contained in
the resolved field. As these quantities represent the subgrid scales, we are
justified in thinking that, if they are correctly evaluated, the subgrid viscosity
will be negligible when the flow is well resolved numerically. However, it
should be noted that these models in principle require more computation than
those based on the resolved scales, because they produce more information
concerning the subgrid scales.

Eztension to Other Spectrum Shapes. The above developments are based on a
Kolmogorov spectrum, which reflects only the existence of a region of similar-
ity of the real spectra. This approach can be extended to other more realistic
spectrum shapes, mainly including the viscous effects. Several extensions of
the models based on the large scales were proposed by Voke [337] for this.
The total dissipation (¢) can be decomposed into the sum of the dissipation



90 4. Functional Modeling (Isotropic Case)
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Fig. 4.12. Kinetic energy dynamics in the spectral space. The energy is injected
at the rate g7. The transfer rate through the cutoff located at the wave number
ke is denoted &. The dissipation rate in the form of heat by the viscous effects
associated with the scales located before and after the cutoff k; are denoted &, and
Esgs, Tespectively.

associated with the large scales, denoted (e,), and the dissipation associated
with the subgrid scales, denoted (esgs), (see Fig. 4.12):

<E> = (Er> + <53gs> . (4.64)

These three quantities can be evaluated as:

(€) = Qlusgs +V)ISP?) (4.65)
ke
(&) = Ww([SP) = 20 / KRE(k)dE | (4.66)
0
(eses) = 2(veslB%) = CA" 208P)°” (4.67)
from which we get:
<(5€r>> = 141rﬂ’ b= @ . (4.68)

This ratio is evaluated by calculating the (g,) term analytically from the
chosen spectrum shapes, which provides a way of then computing the subgrid
viscosity (Vsgs)-
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We define the three following parameters:

k 3\ /4 K |
kw2 a2k 4.69
"Tha (<E>> " ka (4.69)

—2 —
A4 /2|52
Sy

in which %q is the wave number associated with the Kolmogorov scale (see
Appendix A), and Re'is the mesh-Reynolds number. Algebraic substitutions
lead to: ‘

k=mnReZ21+0)7V (4.71)

The spectra studied here are of the generic form:
E(k) = Koe®*k™33 f(x) (4.72)

in which f is a damping function for large wave numbers. The following are
some commonly used forms of this function:

— Heisenberg—~Chandrasekhar spectrum:

3ko\* L]
fk) = [1 + (TO) ,#] . (4.73)
— Kovasznay spectrum: | v
2 .
f(r) = (1 - 529;#/3) . (4.74)

Note that this function cancels out for & = (2/Ko)*/*, which requires that
the spectrum be forced to zero for wave numbers beyond this limit.
— Pao spectrum: ' :

f(k) =exp <—£2(—0/e4/3> . (4.75)

These three spectrum shapes are graphed in Fig. 4.13. An analytical
integration leads to:

— For the Heisenberg—Chandrasekhar spectrum:

3 1/3
2
(Usgs> =V K’,C_4/3 [(3__[(-) -+ Klg:l —1 . (477)
- . 0

-1/3
, (4.76)

or:
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Fig. 4.13. Graph of Heisenberg-Chandrasekhar, Kovasznay, and Pao spectra, for
kg = 1000.

— For the Kovazsnay spectrum:

&) _ | (1 _ Kqﬁg/s)g , (4.78)

or:

(Vogs) = v [1 - (1 ~ %ngﬁ)s} -1y . (4.79)

~ For the Pao spectrum:

: K ’
&) g exp <3—2—%§/3> , (4.80)
or:

-1

(Vegs) = v {1 ~ exp (3_12{_2&::1/3) 3} -1 . (4.81)

These new estimates of the subgrid viscosity (vegs) make it possible to
take the viscous effects into account, but requires that the spectrum shape
be set a priori, as well as the value of the ratio k. between the cutoff wave
number k. and the wave number kq associated with the Kolmogorov scale.
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Inclusion of the Local Effects at Cutoff. The subgrid viscosity models in the
physical space, such as they have been developed, do not reflect the increase in
the coupling intensity with the subgrid modes when we consider modes near
the cutoff. These models are therefore analogous to that of constant effective
viscosity. To bring out these effects in the proximity of the cutoff, Chollet [59],
Ferziger [98], Lesieur and Métais [190], Deschamps [80], Borue and Orszag
[29-32], Winckelmans et al. [347) and Layton [181] propose introducing high-
order dissipation terms that will have a strong effect on the high frequencies
of the resolved field without affecting the low frequencies.

Chollet [59], when pointing out that the energy transfer term T can be

sgs
written in the general form :

T (klke) = =20 (k|k )K" E(E) | (4.82)
in which I/én) (k|kc) is a hyper-viscosity, proposes modeling the subgrid term
in the physical space as the sum of an ordinary subgrid-viscosity model and
a sixth-order dissipation. This new model is expressed:

Vo= —(sg) (V2 + VT, (4.83)

in which C; and C, are constants. Ferziger proposes introducing a fourth-
order dissipation by adding to the subgrid tensor 7 the tensor 74, defined

as:
27 2—
w_ 9 (@ 0% 0 (@ 9% 484
Tij Ox; (ngs Oz 0z + 0x; Vogs Oz 0xy, T (4.84)
or as
2 —
@__9 @ (9, Oy 4.85
Tig Oz0xy, (ngs Oz; + Ox; ! (4.85)
in which the hyper-viscosity u§§3 is defined by dimensional arguments as
v = Cu'[S) . (4.86)

The full subgrid term that appears in the momentum equations is then
written:

Tij = 7’1572) + T1574) ; (487)

in which Ti(jz) is a subgrid viscosity model described above. A similar form is

proposed by Lesieur and Métais: after defining the velocity field u® as

u® =vVv¥*a | (4.88)
the two authors propose the composite form:

Tij = —VegsSij + (PG S (4.89)
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in which vg,; hyper-viscosity obtained by applying a subgrid viscosity model
to the u® field, and S° the strain rate tensor computed from this same field.
The constant of the subgrid model used should be modified to verify the local
equilibrium relation, which is

(=7:S35) = (e)

1t is worth noting that subgrid dissipations defined thusly, as the sum of
second- and fourth-order dissipations, are similar in form to certain numerical
schemes designed for capturing strong gradients, like that of Jameson et al.

-[150].

Borue and Orszag [29-32] propose to eliminate the molecular and the
subgrid viscosities by replacing them by a higher power of the Laplacian op-
erator. Numerical tests show that three-dimensional inertial-range dynamics
is relatively independent of the form of the hyperviscosity. It was also shown
that for a given numerical resolution, hyperviscous dissipations increase the
extent of the inertial range of three-dimensional turbulence by an order of
magnitude. It is worth noting that this type of iterated Laplacian is commonly
used for two-dimensional simulations. Borue and Orszag used a height-time
iterated Laplacian to get these conclusions. Such operators are easily defined
when using spectral methods, but are of poor interest when dealing with
finite difference of finite volume techniques.

Subgrid-Viscosity Models. Various subgrid viscosity models belonging
to the three categories defined above will now be described. These are the
following;:

1. The Smagorinsky model (p.95), which is based on the resolved scales.
This model, though very simple to implant, suffers from the defects
already mentioned for the models based on the large scales.

2. The Structure Function model (p.95), which is an extension into phys-
ical space of the models based on the energy at cutoff. Theoretically
based on local frequency information, this model should be capable of
treating large-scale intermittency better than the Smagorinsky model.
However, the impossibility of localizing the information in both space
and frequency (see discussion further on) reduces its efficiency.

3. A model based on the kinetic energy of the subgrid modes (p.97). This
energy is considered as an additional variable of the problem, and is
evaluated by solving a evolution equation. Since it contains information
relative to the subgrid scales, it is theoretically more capable of handling
large-scale intermittency than the previous model. Moreover, the local
equilibrium hypothesis can be relaxed, so that the spectral nonequilib-
rium can be integrated better. The model requires additional hypotheses,
though (modeling, boundary conditions).

equation for a quantity linked to a characteristic subg  scale, by which
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it can be classed among models based on the subgrid scales. It has the
same advantages and disadvantages as the previous model.

5. The Mixed Scale Model (p.99), which uses information related both to the
subgrid modes and to the resolved scales, though without incorporating
additional evolution equations. The subgrid scale data is deduced from
that contained in the resolved scales by extrapolation in the frequency
domain. This model is of intermediate level of complexity (and quality)
between those based on the large scales and those that use additional
variables.

Smagorinsky Model. The Smagorinsky model [312] is based on the large
scales. It is generally used in a local form the physical space, i.e. variable
in space, in order to be more adaptable to the flow being calculated. It is
obtained by space and time localization of the statistical relations given in
the previous section. TThere is no particular justification for this local use
of relations that are on average true for the whole, since they only ensure
that the energy transfers through the cutoff are expressed correctly on the
average, and not locally.
This model is expressed:

vegs (%,8) = (G B)” (205, )2 . (4.90)

The constant theoretical value Cy is evaluated by the relations (4.45) or
(4.48). Tt should nonetheless be noted that the value of this constant is, in
practice, adjusted to improve the results. Clark et al. [65] use C5 = 0.2 for a
case of isotropic homogeneous turbulence, while Deardorff [76] uses Cs = 0.1
for a plane channel flow. Studies of shear flows using experimental data yield
similar evaluations (Cs ~ 0.1 — 0.12) [225,258]. This decrease in the value of
the constant with respect to its theoretical value is due to the fact that the
field gradient is now non-zero and that it contributes to the |S(x,t)| term.
To enforce the local equilibrium relation, the value of the constant has to be
reduced. It should be noted that this new value ensures only that the right
quantity of resolved kinetic energy will be dissipated on the whole throughout
the field, but that the quality of the level of local dissipation is uncontrolled.

Structure Function Model. This model is a transposition of Métais and
Lesieur’s constant effective viscosity model into the physical space, and can
consequently be interpreted as a model based on the energy at cutoff, ex-
pressed in physical space. The authors [235] propose evaluating the energy at
cutoff E(k.) by means of the second-order velocity structure function. This
is defined as:

Fy(x,r,t) = / [u(x,£) — u(x +x, 1)) &< . (4.91)

. |x’|=r

In the case of is~*ropic homogeneous turbulence, we have the relation:
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Fy(r,t) = / By, dPx = 4 /0 " B 1) (1 _ ﬂ‘é@) de . (4.92)

Using a Kolmogorov spectrum, the calculation of (4.92) leads to:

Fg(?",t)— T(1/3)Kee?/3r2/3 | (4.93)

or, expressing the dissipation ¢, as a function of Fy(r,t) in the expression for
the Kolmogorov spectrum:

E(k) = 91“(2 /3)F2(r ) 2388 (4.94)

To derive a subgrid model, we now have to evaluate the second-order
structure function from the resolved scales alone. To do this, we decompose

by:
Fz (’I", t) = F_z (7‘, t) + CO (’l‘, t) s (495)

in which Fa(r,t) is computed from the resolved scales and Cy(r,t) corre-
sponds to the contribution of the subgrid scales:

Colrt) =4 [ Bk 1) (1 - %) ik . (4.96)

ke

By replacing the quantity F(k,t) in equation (4.96) by its value (4.94),
we get:

~2/3
Gl =Rl (%) Haste/B) (497)
in which Hy is the function
20 3
H(z) = ———
(@) = Sr(/a) [27r2/3

Once it is substituted in (4.95), this equation makes it possible to evaluate
the energy at the cutoff. The Structure Function model takes the form:

(Vsgs (1)) = A(r/A)A\/ Fy(r,t) (4.99)

+ 2%/3Im {exp(i57/6)T(—5/3, zm:)}] . (4.98)

in which -
- 2K_3/2 vy Yy —1/2
AW = S R (1-o7PHa(@) . @100)

In the same way as for the Smagorinsky model, a local model in space
can be had by using relation (4.94) locally in order to include the local
intermittency of the turbulence. The model is then written:
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. Vegs(X,7) = A(r/A) A/ Fo(x,7,t) . (4.101)

In the case where r = A, the model takes the simplified form:

Vsgs(X, A, ) = 0.105A/ Fa(x, 4,t) . (4.102)

A link can be established with the models based on the resolved scale
gradients by noting that:

u(x,t) —u(x +x,t) = —x' - Vu(x,t) + O(|x'>) . (4.103)

This last relation shows that the function F is homogeneous to a norm of
the resolved velocity field gradient. If this function is evaluated in the simula-
tion in a way similar to how the resolved strain rate tensor is computed for the
Smagorinsky model, we can in theory expect the Structure Function model to
suffer some of the same weaknesses: the information contained in the model
will be local in space, therefore non-local in frequency, which induces a poor
estimation of the kinetic energy at cutoff and a loss of precision of the model
in the treatment of large-scale intermittency and spectral nonequilibrium.

Model Based on the Subgrid Kinetic Energy. One model, of the form
(4.61), based on the subgrid scales, was developed independently by a number
of authors [137,242,298,318,361,362]. The subgrld viscosity is computed
from the kinetic energy of the subgrid modes qSgs

Vegs(%, 1) = Cm Ay /2 (%,1) (4.104)

where, for reference:

o r1) = 5 (w0, 0) ~ T, 1) (4.105)

The constant Cy, is evaluated by the relation (4.61). This energy consti-
tutes another variable of the problem and is evaluated by solving an evolution
equation. This equation is obtained from the exact evolution equation (3.31),
whose unknown terms are modeled according to Lilly’s proposals [194], or by
a re-normalization method. The various terms are modeled as follows (refer
to the work of McComb [207], for example):

— The diffusion term is modeled by a gradient hypothesis, by stating that
the non-linear term is proportional to the kinetic energy qszgs gradient
(Kolmogorov-Prandtl relation):

s R A pu— 8 [— 8q?
o ( S+ ) = Cp (A Gag] - (@109)
) J
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~ The dissipation term is modeled using dimensional reasoning, by:

Ve od (g2
£=3 Oz, 9a; Cl—‘Z-_ . (4.107)

The resulting evolution equation is:

— 3
aqggs auquzgs bred qs2g & .
R T A
WLJ II N e’

I 117

o . 8(]2 32(12

G+ Co— 1 A 2 sgs Sgs '
zﬁmj( Tsgs dz; +V83:j5xj > (4.108)
N
v v

in which Cj and C5 are two positive constants and the various terms repre-
sent:

— I - advection by the resolved modes,
— II - production by the resolved modes,
— IIT - turbulent dissipation,

— IV - turbulent diffusion,

— V- viscous dissipation.

Using an analytical theory of turbulence, Yoshizawa [361,362] and Horiuti
[137] propose C; = 1 and C5 = 0.1.

. Yoshizawa Model. The filter cutoff length, A, is the only length scale
used in deriving models based on the large scales, as this derivation has
been explained above. The characteristic length associated with the subgrid
scales, denoted Ay, is assumed to be proportional to this length, and the
developments of Sect. 4.3.2 show that:

As=CsA . (4.109)

The variations in the structure of the subgrid modes cannot be included
by setting a constant value for the coefficient Cs, as is done in the case of
the Smagorinsky model, for example. To remedy this, Yoshizawa [358,360]
proposes differentiating these two characteristic scales and introducing an
additional evolution equation to evaluate As. This length can be evaluated
from the dissipation € and the subgrid kinetic energy qus by the relation:

Ap= 0yt Lo, ggz) . —cg(qggg R (R EL)

4.3 Modeling of the Forward Energy Cascade Process 99

in which D/ Dt is the material derivative associated with the resolved velocity
field. The values of the constants appearing in equation (4.110) can be deter-
mined by an analysis conducted with the TSDIA technique [360] : C1 = 1.84,
Co = 4.95 et C3 = 2.91. We now express the proportionality relation between
the two lengths as: '

Ar=(1+rx,t)A . (4.111)
- By evaluating the subgrid kinetic energy as:
— 2/3
e = (Be/C1)* (4.112)
relations (4.110) and (4.111) lead to:

~a73De

—2/3
=CyA , 4.113
| g 4 € D ( )
with Cy = 0.04. Using the local equilibrium hypothesis, we get:
£ = —Tijgij ~ C5A?I§I3 5 (4114)

in which Cs = 6.52.1073. This definition completes the calculation of the
factor r and the length A¢. This variation of the characteristic length Ay can
be re-interpreted as a variation of the constant in the Smagorinsky model:

DB =2ma @ (203 > |
— _ 22120 2_ . Ehatiad . (4.115
Cs = Cuo (1 GBI T + OB 5 (|5| 5, (4.115)

The constants Cs, Ca and Cy, are evaluated at 0.16, 1.8, and 0.047,

respectively, by Yoshizawa [360] and Murakami [253]. In practice, C', is taken
to be equal to zero and the constant Cs is bounded in order to ensure the
stability of the simulation: 0.1 < Cs < 0.27. Morinishi and Kobayashi [247]
recommend using the values C, = 32 and Cyo = 0.1.
Mixed Scale Model. Ta Phuoc Loc and Sagaut [284,285] defined models
having a triple dependency on the large and small structures of the resolved
field as a function of the cutoff length. These models, which make up the
one-parameter Mixed Scale Model family, are derived by taking a weighted
geometric average of the models based on the large scales and those based
on the energy at cutoff:

v (@)(x,) = Cn [F @, ()T () 277, (4.116)

with
F(H(x, t)) = S(x,t) or V x W(x,t) . (4.117)

It should be noted that localized versions of the models are used here, so
that any flows the ‘o not verify the spatial homogeneity property can be
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processed better. The kinetic energy ¢2 is evaluated in the physical space by
the formula:

@2(x,t) = %(ﬂi(x, B @i(x, 1)) . (4.118)

The test field (@)’ represents the high-frequency part of the resolved veloc-
ity field, defined using a second filter, referred to as the test filter, designated

by the tilde symbol and associated with the cutoff length A > A (see Fig.
4.14):

@'=ua-ua . (4.119)

E(k)

=N
=

Subgrid modes

k, kC k
Fig. 4.14. Spectral subdivisions for double sharp-cutoff filtering. % is the resolved
fleld in the sense of the test filter, (7)’ the test field, and'u’ the unresolved scales
in the sense of the initial filter.

The resulting model can be interpreted in two ways:

~ As a model based on the kinetic energy of the subgrid scales, i.e. the
second form of the models based on the subgrid scales in Sect. 4.3.2, if we
use Bardina’s hypothesis of scale similarity (described in Chap. 6), which
allows us to set:

@ gk, (4.120)
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in which qggs is the kinetic energy of the subgrid scales. This assumption
can be refined in the framework of the canonical analysis. Assuming that
the two cutoffs occur in the inertial range of the spectrum, we get:

k
C 3 _
@ = [, Bk = 5K Gt S I (4.121)

in which k¢ and & are wave numbers associated with A and A, respectively.
We then define the relation:

2 o2 ~ k_g —2/3_
% =Py B= |1 1 (4.122)

It can be seen that the approximation is exact if 8 = 1, i.e. if:

K, = %kc K (4.123)
This approximation is also used by Bardina et al. [13] and Yoshizawa et al.
[363] to derive models based on the subgrid kinetic energy without using
any additional transport equation.

— As a model based on the energy at cutoff, and therefore as a generalization
of the spectral model of constant effective viscosity into the physical space.
That is, using the same assumptions as before, we get:

@ = SphB(k) . (4.124)

Here, the approximation is exact if k., = k./+/8.

It is important to note that the Mixed Scale Model makes no use of any
commutation property between the test filter and the derivation operators.
Also, we note that.for o € [0, 1] the subgrid viscosity vegs(a) is always defined,
whereas the model appears in the form of a quotient for other values of &
can then raise problems of numerical stability once it is discretized, because
the denominator may cancel out.

The model constant can be evaluated theoretically by analytical theories
of turbulence in the canonical case. Resuming the results of Sect. 4.3.2, we
get:

Cn=Cy*C2™ (4.125)
in which Cs ~ 0.18 or Cs ~ 0.148 and Cq4 ~ 0.20.
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4.3.3 Improvement of Models in the Physical Space

Statement of the Problem. Experience shows that the various models
yield good results when they are applied to homogeneous turbulent fows
and that the cutoff is placed sufficiently far into the inertial range of the
spectrum, i.e. when a large part of the total kinetic energy is contained in
the resolved scales'®.

In other cases, as in transitional flows, highly anisotropic flows, highly
under-resolved flows, or those in high energetic disequilibrium, the subgrid
models behave much less satisfactorily. Aside from the problem stemming
from numerical errors, there are mainly two reasons for this:

1. The characteristics of these flows does not correspond to the hypotheses
on which the models are derived, which means that the models are at
fault. We then have two possibilities: deriving models from new physical
hypotheses or adjusting existing ones, more or less empirically. The first
choice is theoretically more exact, but there is a lack of descriptions of
turbulence for frameworks other than that of isotropic homogeneous tur-
bulence. Still, a few attempts have been made to consider the anisotropy
appearing in this category. These are discussed in Chap. 5. The other
solution, if the physics of the models is put to fault, consists in reducing
their importance, i.e. increasing the cutoff frequency to capture a larger
part of the flow physics directly. This means increasing the number of de-
grees of freedom and striking a compromise between the grid enrichment
techniques and subgrid modeling efforts.

2. Deriving models based on the energy at cutoff or the subgrid scales (with
no additional evolution equation) for simulations in the physical space
runs up against Gabor-Heisenberg’s generalized principle of uncertainty
[91,285], which stipulates that the precision of the information cannot
be improved in space and in frequency at the same time. This is il-
lustrated by Fig. 4.15. Very good frequency localization implies high
non-localization in space, which reduces the possibilities of taking the
intermittency'® into account and precludes the treatment of highly inho-
mogeneous flows. Inversely, very good localization of the information in
space prevents any good spectral resolution, which leads to high errors,
c.g. in computing the energy at the cutoff. Yet this frequency localization
is very important, since it alone can be used to detect the presence of
the subgrid scales. It is important to recall here that large-eddy simula-

15 Certain authors estimate this share to be between 80 % and 90 % [53]. Another
criterion sometimes mentioned is that the cutoff scale should be of the order
of Taylor's microscale. Bagget et al. [10] propose to define the cutoff length in
such a way that the subgrid scales will be quasi-isotropic, leading to A & L¢ /10,
where L¢ is the integral dissipation length.

16 Direct numerical simulations and experimental data show that the true subgrid
dissipation and its surrogates do not have the same scaling g [52, 232].
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Fig. 4.15. Representation of the resolution in the space-frequency plane. The spat
ial resolution A is associated with frequency resolution Ay. Gabor-Heisenberg’s
uncertainty principle stipulates that the product ‘A x Ay, remains constant, i.e. that
the area of the gray domain keeps the same value (from [91], with the permission
of F. Ducros).

tion is based on a selection in frequency of modes making up the exact
solution. Problems arise here, induced by the localization of statistical
average relations that are exact, as this localization may correspond to
a statistical average. Two solutions may be considered: developing an
acceptable compromise between the precision in space and frequency,
or enriching the information contained in the simulation, which is done
either by adding variables to it as in the case of models based on the
kinetic energy of the subgrid modes, or by assuming further hypotheses
when deriving models.

In the following, we present techniques developed to improve the simula-
tion results, though without modifying the structure of the subgrid models
deeply. The purpose of all these modifications is to adapt the subgrid model
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better to the local state of the flow and remedy the lack of frequency local-
ization of the information.
We will be describing:

1. Dynamic procedures for computing subgrid model constants (p.105).
These constants are computed in such a way as to reduce an a priori
estimate of the error committed with the model considered, locally in
space and time, in the least squares sense. This estimation is made using
the Germano identity, and requires the use of an analytical filter. It
should be noted that the dynamic procedures do not change the model
in the sense that its form (e.g. subgrid viscosity) remains the same. All
that is done here is to minimize a norm of the error associated with
the form of the model considered. The errors committed intrinsically!”
by adopting an a priori form of the subgrid tensor are not modified.
These procedures, while theoretically very attractive, do pose problems
of numerical stability and can induce non-negligible extra computational
costs. This variation of the constant at each point and each time step
makes it possible to minimize the error locally for each degree of freedom,
while determining a constant value offers only the less efficient possibility
of an overall minimization. This is illustrated by the above discussion of
the constant in the Smagorinsky model.

2. Structural sensors (p.118), which condition the existence of the subgrid
scales to the verification of certain constraints by the highest frequencies
of the resolved scales. More precisely, we consider here that the subgrid
scales exist if the highest resolved frequencies verify topological proper-
ties that are expected in the case of isotropic homogeneous turbulence.
When these criteria are verified, we adopt the hypothesis that the highest
resolved frequencies have a dynamics close to that of the scales contained
in the inertial range. On the basis of energy spectrum continuity (see the
note of page p.83), we then deduce that unresolved scales exist, and the
subgrid model is then used, but is otherwise canceled.

3. The accentuation technique (p.120), which consists in artificially increas-
ing the contribution of the highest resolved frequencies when evaluating
the subgrid viscosity. This technique allows a better frequency localiza-
tion of the information included in the model, and therefore a better
treatment of the intermittence phenomena, as the model is sensitive only
to the higher resolved frequencies. This result is obtained by applying a
frequency high-pass filter to the resolved field.

4. The damping functions for the near-wall region (p.123), by which certain

modifications in the turbulence dynamics and characteristic scales of the

Y7 For example, the subgrid viscosity models described above all induce a linear
dependency between the subgrid tensor and the resolved-scale tensor:

d —
7’,']' = ~usgsS,~j
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subgrid modes in the boundary layers can be taken into account. These
functions are established in such a way as to cancel the subgrid viscosity
models in the near-wall region so that they will not inhibit the driving
mechanisms occurring in this area. These models are of limited generality
as they presuppose a particular form of the flow dynamics in the region
considered. They also require that the relative position of each point
with respect to the solid wall be known, which can raise problems in
practice such as when using multidomain techniques or when several
surfaces exist. And lastly, they constitute only an amplitude correction
of the subgrid viscosity models for the forward energy cascade: they are
not able to include any changes in the form of this mechanism, or the
emergence of new mechanisms.

The three “generalist”techniques (dynamic procedure, structural sensor,
accentuation) for adapting the subgrid viscosity models are all based on
extracting a test field from the resolved scales by applying a test filter to
these scales. This field corresponds to the highest frequencies catured by the
simulation, so we can see that all these techniques are based on a frequency
localization of the information contained in the subgrid models. The loss
of localness in space is reflected by the fact that the number of neighbors
involved in the subgrid model computation is increased by using the test
filter.

Dynamic Procedures for Computing the Constants.
Dynamic Models

Germano—Lilly Dynamic Procedure. In order to adapt the models better to
the local structure of the flow, Germano et al. [118] proposed an algorithm for
adapting the Smagorinsky model by automatically adjusting the constant at
each point in space and at each time step. This procedure, described below, is
applicable to any model that makes explicit use of an arbitrary constant Cgy,
such that the constant now becomes time- and space-dependent: Cyq becomes
Ca(x,t). :

The dynamic procedure is based on the Germano identity (3.78), now
written in the form:

Lij=Tij — %5 (4.126)
in which
Tij = Lij + Cyj + Rij = Wy — W5 (4.127)
Ty = Wit — Wit (4.128)
Lij = G — W, (4.129)

in which the tilde symbol tilde designates the test filter. The tensors 7 and
T are the subgrid tensors corresponding, respectively, to the first and second
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filtering levels. The latter filtering level is associated with the characteristic
length A, with A > A. Numerical tests show that an optimal value is
A =2A. The tensor L can be computed directly from the resolved field.

We then assume that the two subgrid tensors 7 and 7" can be modeled by
the same constant Cy for both filtering levels. Formally, this is expressed:

1

7ij — 5Tekdig = Calby (4.130)
1

Tij — 3Ty = Cacj (4.131)

in which the tensors o and § designate the deviators of the subgrid tensors
obtained using the subgrid model deprived of its constant. It is important
noting that the use of the same subgrid model with the same constant is
equivalent to a scale-invariance assumption on both the subgrid fluxes and
the filter, to be discussed in the following.

Some examples of subgrid model kernels for o;; and §;; are given in Table
4.1.

Table 4.1. Examples of subgrid model kernels for the dynamic procedure.

Model Bij Qij

D e 2~ =
(4.90)  —27A°(3[Sy —2A [3|5;;
(4.102) —24,/F(A)S,; —9A\F(D)S;;

—1+o oo — ~ 1t

(4116) 28" |F@(2)5y 24 |F@@) 55y

Introducing the above two formulas in the relation (4.126), we get!8:

) - .
L;; — —?;ka(sij = L?j = Caay; — CafBi; - (4.132)

We cannot use this equation directly for determining the constant Cy
because the second term uses the constant only through a filtered product
[281]. In order to continue modeling, we need to make the approximation:

- CaBi; = CaBi; (4.133)

which is equivalent to considering that Cy is constant over an interval at least
equal to the test filter cutoff length. The parameter Cy will thus be computed

18 It is important to note that, for the present case, the tensor L;; is replaced by

d

its deviatoric part Ly;, because we are dealing with a zero-trace subgrid viscosity

modeling.
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in such a way as to minimize the error committed'®, which is evaluated using
the residual E;;:

1 ~
Eij = Li; - ngk5ij = Caai; + Cafs; - (4.134)

This definition consists of six independent relations, which in theory
makes it possible to determine six values of the constant?®. In order to con-
serve a single relation and thereby determine a single value of the constant,
Germano et al. propose contracting the relation (4.134) with the resolved
strain rate tensor. The value sought for the constant is a solution of the
problem:

8Eij§ij

0Cq
This method can be efficient, but does raise the problem of indetermi-
nation when the tensor S;; cancels out. To remedy this problem, Lilly [195]

proposes calculating the constant Cy by a least-squares method, by which
the constant Cq now becomes a solution of the problem:

—0 . (4.135)

—0 | 4.136
or
i L
Oy = i (4.137)
MElMEl
in which
Mij = Qj — Bij . (4.138)

The constant Cy thus computed has the following properties:

— It can take negative values, so the model can have an anti-dissipative effect
locally. This is a characteristic that is often interpreted as a modeling of
the backward energy cascade mechanism. This point is detailed in Sect.
4.4.

— Tt is not bounded, since it appears in the form of a fraction whose denom-

inator can cancel out?!.

19 Meneveau and Katz [227] propose to use the dynamic procedure to rank the
subgrid models, the best one being associated with the lowest value of the
residual.

_20 Which would lead to the definition of a tensorial subgrid viscosity model.

21 This problem is linked to the implementation of the model in the simulation. In
the continuous case, if the denominator tends toward zero, then the numerator

. cancels out too. These are calculation errors that lead to a problem of division
by zero.
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These two properties have important practical consequences on the nu-
merical solution because they are both potentially destructive of the stability
of the simulation. Numerical tests have shown that the constant can remain
negative over long time intervals, causing an exponential growth in the high
frequency fluctuations of the resolved field. The constant therefore needs an
ad hoc process to ensure the model’s good numerical properties. There are
a number of different ways of performing this process on the constant: sta-
tistical average in the directions of statistical homogeneity [118, 354], in time
or local in space [366]; limitation using arbitrary bounds [366] (clipping); or
by a combination of these methods [354, 366]. Let us note that the averaging
procedures can be defined in two non-equivalent ways [367): by averaging the
denominator and numerator separately, which is denoted symbolically:

L4
Cy = M , (4'139)
(mamig)

or by averaging the quotient, i.e. on the constant itself:

d
mij L,L :
Cq = (Cq) = (——L) | 4.140
(Ca) = (Lt (4.140)
The ensemble average can be performied over homogeneous directions of
the simulation (if they exist) or over different realizations, i.e. over several
statistically equivalent simulations carried out in parallel [48,51].
The time average process is expressed:

Ca(x, (n+1)At) = a1 Ca(x, (n + 1) At) + (1 — a1)Ca(x,nAt) , (4.141)

in which At is the time step used for the simulation and a1 <1 a constant.
Lastly, the constant clipping process is intended to ensure that the following
two conditions are verified:

Vb v 20 (4.142)

Od < Cmax . (4143)

The first condition ensures that the total resolved dissipation € = V?ij_S_ij -
njgij remains positive or zero. The second establishes an upper bound. In
practice, Crax is of the order of the theoretical value of the Smagorinsky
constant, i.e. Cpax =~ (0.2)2.

The models in which the constant is computed by this procedure are called
“dynamic”because they automatically adapt to the local state of the flow.
When the Smagorinsky model is coupled with this procedure, it is habitually
called the dynamic model, because this combination was the first to be put
to the test and is still the one most extensively used among the dynamic
models.
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The use of the same value of the constant for the subgrid model at the
two filtering levels appearing in equation (4.126) implicitely relies on the two

following self-similarity assumptions:

— The two cutoff wave numbers are located in the inertial range of the kinetic
energy spectrum;

— The filter kernels associated to the two filtering levels are themselves self-
similar.

These two constraints are not automatically satisfied, and the validity of
the dynamic procedure for computing the constant requires a careful analysis.
Meneveau and Lund [229] propose an extension of the dynamic procedure

for a cutoff located in the viscous range of the spectrum. Writing the constant

of the subgrid-scale model C as an explicit function of the filter characteristic
length, the Germano-Lilly procedure leads to

C@)=Cc@ =0y . E (4.144)

Let be the Kolmogorov lengthscale. It was said in the introduction
that the flow is fully resolved if A = 7. Therefore, the dynamic procedure is
consistent if, and only if

dim Cy=C(p)=0 . (4.145)
A—n

Numerical experiments carried out by the two authors show that the
Germano-Lilly procedure is not consistent, because it returns the value of
the constant associated to the test filter level

Ca=C() |, (4.146)
yielding
lim Gy =C(rn) £0, r=A/A . (4.147)
A—n

Numerical tests also showed that taking the limit 7 — 1 or computing the
two values C(A) and C(r4) using least-square-error minimization without
assuming them to be equal yield inconsistent or ill-behaved solutions. A

=solution is to use prior knowledge to compute the dynamic constant. A robust

algorithm is obtained by rewriting equation (4.134) as follows:
Ej=Lg - C(4) (f (4, r)a; — B}j) , (4.148)

where f(A,r) = C(rA)/C(A) is evaluated by calculations similar to those of
Voke (see page 89). A simple analytical fitting is obtained in the case r = 2:

(4,2) ~ max(100,1077), & = 3.23(Re, 39 — ReZ %) (4.149)
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where the mesh-Reynolds numbers are evaluated as (see equation (4.70)):
| 44°[3|
v .
We now consider the problem of the filter self-similarity. Let G; and Gy
be the filter kernels associated to the first and second filtering level. For sake

|

3|

RSZ = 5 R62Z =

of simplicity, we use the notations A = A; and A = A,. We assume that the
filter kernel are re-written in a form such that:

1
=N _ lz — ¢
i(z) =G xu(z) = | G2 A u(&)dé . (4.151)
2
We also introduce the test filter Gy, which is defined such that
T=Goxu=0C+xu=GxGrL*xu . (4.152)
The filters G; and G5 are self-similar if and only if
1 y '
Gily) = —Ca (2), r=d9/Ar (4.153)

Hence, the two filters must have identical shapes and may only differ by
their associated characteristic length. The problem is that in practice only
G, is known, and the self-similarity property might not be a priori verified.
Carati and Vanden Eijnden [49] show that the interpretation of the resolved
field is fully determined by the choice of the test filter G, and that the use
of the same model for the two levels of filtering is fully justified. This is
demonstrated by re-interpreting previous filters in the following way. Let us
consider an infinite set of self-similar filters {F}, = F(l,)} defined as

Fo(z) = rinf (f—) da=1"l (4.154)

7

where F, 7 > 1 and Iy are the filter kernel, an arbitrary parameter and a
reference length, respectively. Let us introduce a second set {Fyy = F*(I7)}
defined by

Er=F,xFp1x..xF_ o . (4.155)
For positive kernel F, we get the following properties:

— The length I obeys the same geometrical law as [y, :

=rl_,, and If=——ol, . (4.156)
2 —1

— {E*} constitute a set of self-similar filters.
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. Using these two set of filters, the classical filters involved in the dynamic
procedure can be defined as self-similar filters:

Gi(4y) = Fu(ln) (4.157)
Gi(Ay) = B (15_)) (4.158)
G2(42) = Fi(ly) - (4.159)

For any test-filter Gy and any value of r, the first filter operator can be
constructed explicitly :

G = Gu( D)) % Co( A f17) 5 ook Gy(Afr™) (4.160)

This relation shows that for any test filter of the form (4.157), the two
filtering operators can be rewritten as self-similar ones, justifying the use of
the same model at all the filtering levels.

Lagrangian Dynamic Procedure. The constant regularization procedures based
on averages in the homogeneous directions have the drawback of not being
usable in complex configurations, which are totally inhomogeneous. One tech-
nique for remedying this problem is to take this average along the fluid par-
‘ticle trajectories. This new procedure [230], called the dynamic Lagrangian
procedure, has the advantage of being applicable in all configurations.

" “The trajectory of a fluid particle located at position x at time ¢ is, for
times ¢’ previous to t, denoted as:

¢
2(t') = x — / a ("), ¢)d" . (4.161)
tl
The residual (4.134) is written in the following L‘agrangian form:

Ei;(z,t)) = Lij(z,t') — Ca(x,t)mi;(z,t) . (4.162)

We see that the value of the constant is fixed at point x at time ¢, which
is equivalent to the same linearization operation as for the Germano-Lilly
procedure. The value of the constant that should be used for computing the
subgrid model at x at time ¢ is determined by minimizing the error along
the fluid particle trajectories. Here too, we reduce to a well-posed problem

by defining a scalar residual Ejng, which is defined as the weighted integral

along the trajectories of $he residual proposed by Lilly:

Elag = /_ t E;i;(z(t),t)Ey(a(t),t )W (t —t)dt' (4.163)

in which the weighting function W (¢t —t’) is introduced to control the memory
effect. The constant is a solution of the problem:
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t . ANEY) ’
8{5&2@ — / 2Eij (z(tl)’ t/)aEzj(az(t )1 3 )W(t _ t/)dt/ =0 ; (4.164) KJLM(X, nAt) = G,Lij (X, nAt)mij (X, nAt)
d o Joo Ca + (1 - a)Jom(x — Att(x, nAt), (n — 1)At),  (4.172)
or: Jum (x,nAt) = amy;(x, nAt)mg; (x, nAt)
+ (1 —a)Jmm(x — Ata(x, nAt), (n — 1)AL), (4.173
Gty = T w165) (1 = &) Janna(x — Atii(x, nA8), (n ~ 1) A1), (4.173)
Jvm where
in which
At/ T,
: : a= T—Z/t-l—Tg— . (4.174)
JLM(X, t) = / L”m” (Z(tl), tl)W(t - t/)dt/ s (4166) + / lag
-0 This new procedure requires only the storage of the two parameters Jiu
i and Jum at the previous time step and the use of an interpolation procedure.
I (x,t) = / migmi; (2(t), YWt ~t)dt' . (4.167) The authors indicate that a linear interpolation is acceptable.

Constrained Localized Dynamic Procedure. Another generalization of the Ger-
mano~L1Hy dynamic procedure was proposed for inhomogeneous cases by
Ghosal et al. [122]. This new procedure is based on the idea of minimizing an
integral problem rather than a local one in space, as is done in the Germano—
Lilly procedure, which avoids the need to linearize the constant when applying
the test filter. We now look for the constant Cy that will minimize the function
F|Cq4), with

These expressions are non-local in time, which makes them unusable for
the simulation, because they require that the entire history of the simulation
be kept in memory, which exceeds the storage capacities of today’s super-
computers. To remedy this, we choose a fast-decay memory function W:

W(t—t)= Loep (121 (4.168)
T T P\ Teg ) '

in which Ti,g is the Lagrangian correlation time. With the memory functxon . N 3 3
in this form, we can get the following equations: PG = | By(x)Ey(x)d’x (4.175)
DI O0Tim  _ 8Fim 1 in which E,J is defined from relation (4.132) and not by (4.134) as was the
Dt ot + % 7y Tie (Lijmi; — Jim) (4.169) case for the previously explained versions of the dynamic procedure. The
' e ' constant sought is such that the variation of F[Cy] is zero:
DJ 0 N 1 ' ‘ .
Dt ot a$z Tlag f[Cd] = 2/EZJ(X)(5E”(X)d x=0 s (4176)

the solution of which can be used to compute the subgrid model constant at
each point and at each time step. The correlation time Tiag is estimated by
tests in isotropic homogeneous turbulence at:

or, by replacing E;; with its value:

_ , / (~a,-jE,»,-50d + Eijﬁi}svod) Bx=0 . (4.177)
Thag(%,t) = L5 A (TumJim) 8, (4.171)

which comes down to considering that the correlation time is reduced in
the high-shear regions where Jay is large, and in those regions where the
non-linear transfers are high, i.e. where Jpu is large.

This procedure does not guarantee that the constant will be positive, and
must therefore be coupled with a regularization procedure. Meneveau et al.
[230] recommend a clipping procedure.

Solving equations (4.169) and (4.170) yields a large amount of additional
numerical work, resulting in a very expensive subgrid model. To alleviate this
problem, the solution to these two equations may be approximated using the
following Lagrangian tracking technique [268]:

Expressing the convolution product associated with the test filter, we get:

/ (‘“ifEij + By / Eg(y)G(x - y)d3y> §Ca(x)d®x =0 ,  (4.178)

from which we deduce the following Euler-Lagrange equation:
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—aijBij + Bij /Eij (y)Gx—-y)d’y =0 . (4.179)

ﬂ%kﬂ=ﬂﬂ—fK@JKMmfy. (w1s7)

This equation can be re-written in the form of a Fredholm’s integral
equation of the second kind for the constant Cy:

This completes the description of the constrained localizéd dynamic pro-
édure. It is applicable to all configurations and ensures that the subgrid
odel constant remains positive. This solution is denoted symbolically:

£60 = Ca() - [ Kix )Gty (4.10)
ca) = [0+ [ Kemicaay| (1.188)
where , +
1 n which + designates the positive part.
flx)= o (X) g (%) (aij (%) Lij (x) — By (x) / Lij (y)G(x = y)d3y> ’ pprozimate Localized Dynamic Procedure. The localized dynamic proce-
(4.181) ure decribed in the preceding paragraph makes it possible to regularize
’ he dynamic procedure in fully non-homogeneous flows, and removes the
Kx,y) = Kalx,y) +Kaly,x) + Ks(x,¥) : athematical inconsistency of the Germano—Lilly procedure. But it requires
! g (X) g (%) ’ _to solve an integral equation, and thus induces a significant overhead.
and To alleviate this problem, Piomelli and Liu [268] propose an Approximate

¢alized Dynamic Procedure, which is not based on a variational approach
sut on a time extrapolation process. Equation (4.132) is recast in the form

Ka(x,y) = a;(x)8; 7)G(x ~y)
d = C’daij - C;ﬂ” 5 (4189)

Ks(x,y) = B8i(x)Bi; () / G(z — x)G(z — y)d’z vhere C}} is an estimate of the dynamic constant Cy, which is assumed to
e known. Writing the new formulation of the residual Ej;, the dynamic
This new formulation raises no problems concerning the linearization o stant is now evaluated as
the constant, but does not solve the instability problems stemming from't
negative values it may take. This procedure is called the localized dynaml'
. procedure.

To remedy the instability problem, the authors propose constraining th
constant to remain positive. The constant Cq(x) is then expressed as th
square of a new real variable £(x). Replacing the constant with its decompo

sition as a function of £, the Euler-Lagrange equation (4.179) becomes:

Qi (Ld + C*ﬂ”)

Qg

Cyq = (4.190)

" The authors propose to evaluate the estimate C}; by a time extrapolation:

(n—1)

cy=ci ™+ Ataac; o (4.191)
where the superscrlpt (n — 1) is related to the value of the variable at the
m+1)th time step, and A, is the value of the time step. In practice, Piomelli
d Liu consider first- and second-order extrapolation schemes. The resulting
namic procedure is fully local, and does not induce large extra computa-
tional effort as the original localized procedure does. Numerical experiments
carried out by these authors demonstrate that it still requires clipping to
yield a well-behaved algorithm.

(—OlijEij + Bi; /Eij(y)G(X - y)d3y> Ex)=0 . (4.185

This equality is true if either of the factors is zero, i.e. if {(x) = 0 or if th
relation (4.179) is verified, which is denoted symbolically Cq(x) = G[Ca(x)]
In the first case, the constant is also zero. To make sure it remains positive
the constant is computed by an iterative procedure:

glc™ if g[c™ (x)] >0 ,
O g = [C{Y(x)] if G[Cy (x)] 7 w16)
0 otherwise .

in which
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Generalized Dynamic Procedure. It is also possible to derive a dynamic pro-
cedure using the generalized Germano identity (3.84) [287]. We assume that .
the operator £ appearing in equation (3.85) is linear, and that there exists a
linear operator £’ such that

Dynamic Inverse Procedure. We have already seen that the use of the dy-
namic procedure may induce some problems if the cutoff is not located in
the inertial range of the spectra, but in the viscous one. A similar problem
arises if the cutoff wave number associated to the test filter occurs at the very
beginning of the inertial range, or in the production range of the spectrum. It
order to compensate inaccuracies arising from the use of a large filter length
associated with the test filter, Kuerten et al. [174] developed a new approach,
referred to as the Dynamic Inverse Procedure. It relies on the idea that if a
dynamic procedure is developed involving only lengthscales comparable to
the basic filter length, self-similarity properties will be preserved and consis-
tent modeling may result. Such a procedure is obtained by defining the first
filtering operator G and the second one F' by

L(aN) = aLl(N)+ L'(a,N) , (4.192) '}

where @ is a scalar real function and N an arbitrary second rank tensor. The
computation of the dynamic constant Cy is now based on the minimization
of the residual E;;

EBij = L(L) ~ CaLlmy) (4.193)

where L; and my; are defined by equations (4.132) and (4.138). A least-

— -1 _
square minimizations yields: G=H"oL F=H , (4.199)

I

.o;

where L'is the classical filter level and H an explicit test filter, whose inverse
:H~! is assumed to be known explicitly. Inserting these definitions into the
Germano identity (3.78), we get a direct evaluation of the subgrid tensor 7:

r_ £(L?J)£(m”)
¢ Limi)Lmy)

The reduction of the residual obtained using this new relation with respect

(4.194)

[F * G*, B] (ui, u]-) = {L*, B](u,, Uj) (4200)

to the classical one is analyzed by evaluating the difference:
: = UUj — Uy (4.201)
0By = Ej; — L(Eyj) (4.195) = 7, (4.202)
where Ej; is given by relation (4.193) and E;; by (4.134). Inserting the two = [H%, Bl o (H™" % Lk)(us, uz)
+(Hx) o [H™" % L, B)(ui,u;) .  (4.203)

dynamic constants Cj and Cq, defined respectively by relations (4.194) and
(4.137), we get: : . . . . - -
"This new identity can be recast in a form similar to the original Germano
(SE,;J' = (Cd — C’é)ﬁ(mw) + £'(Cd,mij) . (4.196) :

An obvious example for the linear operator £ is the divergence operator.
The associated £’ is the gradient operator. ’ »
An alternative consisting in minimizing a different form of the residual
has been proposed by Morinishi and Vasilyev [248] and Mossi [249]:

Ly =m; — HxTS (4.204)

v Ly =H* (H ' *u)(H' x%5)) —wm;
Eij = L(LY) — £(Camij) (4.197)

= L(L;) — Cal(mij) — L'(Ca,mij) (4.193) T =H ' wwu; — (H xw)(H ;)

The use of this new form of the residual generally requires solving" &
differential equation, and then yields a more complex procedure than thé
form (4.193). .

These two procedures theoretically more accurate results than the classi-

The term Lf; is explicitly known in practice, and does not require any

Lilly procedure, we get, for the Smagorinsky model:

cal one, because they provide reduce the error committed on the subgrid force: Tiy = Cafij, Bij = —2ZZ|§|§ij , (4.205)
term itself, rather than on the subgrid tensor. They also take into account _ R N
for the numerical error associated to the discrete form of L. ' Tij = Cacujy iy = —24 15|83 (4.206)
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where A and S are the characteristic length and the strain rate tensor asso-
ciated to the H~! o L filtering level, respectively. Building the residual E;;
as

Eij = L?j - Cd(ﬁij — H % Oéij) = L;?j et Cdmij s (4207)
the least-square-error minimization procedure yields:
Lo
Cy = L (4.208)
MM

In this new procedure, the two lengths involved are A and A. Since the

latter is associated to an inverse filtering operator, we get A < A, ensur-
ing that the dynamic procedure will not bring in lengths associated to the
production range of the spectrum. In practice, this procedure is observed to
suffer the same stability problems than the Germano-Lilly procedure, and
needs to be used together with a stabilization procedure (averaging, clipping,
ete.).

Structural Sensors. Selective Models. In order to improve the predic-
tion of intermittent phenomena, we introduce a sensor based on structural
information. This is done by incorporating a selection function in the model,
based on the local angular fluctuations of the vorticity, developed by David
[74,190].

The idea here is to modulate the subgrid model in such a way as to apply
it only when the assumptions underlying the modeling are verified, .e. when
all the scales of the exact solution are not resolved and the flow is of the
fully developed turbulence type. The problem therefore consists in determin-
ing if these two hypotheses are verified at each point and each time step.
David’s structural sensor tests the second hypothesis. To do this, we assume
that, if the flow is turbulent and developed, the highest resolved frequencies
have certain characteristics specific to isotropic homogeneous turbulence, and
particularly structural properties. '

So the properties specific to isotropic homogeneous turbulence need to
be identified. David, taking direct numerical simulations as a base, observed
that the probability density function of the local angular fluctuation of the
vorticity vector exhibit a peak around the value of 20°. Consequently, he
proposes identifying the flow as being locally under-resolved and turbulent
at those points for which the local angular fluctuations of the vorticity vector
corresponding to the highest resolved frequencies are greater than or equal
to a threshold value 6.

The selection criterion will therefore be based on an estimation of the

angle @ between the instantaneous vorticity vector w and the local average
vortcity vector & (see Fig. 4.16), which is computed by applying a test filter
to the vorticity vector.

The angle @ is given by the following relation:
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Fig. 4.16. Local angular fluctuation of the vorticity vector.

X *—arésin M
60 = (II@(X)H.Hw(x)H) : (4.209)

. We define a selection function to damp the subgrid model when the angle
0 is less than a threshold angle 0.

In the original version developed by David, the selection function fg, is a
Boolean operator:

1if >0

0 otherwise (4.210)

foo®) = {
This function is discontinuous, which may pose problems in the numerical
solution. One variant of it that exhibits no discontinuity for the threshold
value is defined as follows [293]:

_ 1 if 0>6
foo(0) = {r(@)” otherwise ’ (4.211)
:iln which 6g is the chosen threshold value and r the function:
tan2(6/2)
0) = ———7 4.212
r(6) tan?(6p/2) ( )

twhere the exponent n is positive. In practice, it is taken to be equal to 2.
Considering the fact that we can express the angle 6 as a function of the
norms of the vorticity vector w, the average vorticity vector @, and the norm
&' of the fluctuating vorticity vector defined as w’ = w — @, by the relation:

2 .
W =%+ w? — 2wceosh

and the trigonometric ation:
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— cosé

Eypn (k) = Tupn (k)E(K) (4.217)
1 + cosf

tan®(0/2) = , .

. in which Typn (k) is a transfer function which Ducros evaluates in the form:
the quantity tan?(6/2) is estimated using the relation:

. . 2
20w — &2 —w? + o'
20w + % + w? — w'?

ENT
Tupn(k) = b" (—) . (4.218)
ke

Here, b and -y are positive constants that depend on the discrete filter used
in the numerical simulation®?. The shape of the spectrum obtained by the
transfer function to a Kolmogorov spectrum is graphed in Fig. 4.17 for several
values of the parameter n. This type of filter modifies the spectrum of the
initial solution by emphasizing the contribution of the highest frequencies.

tan?(6/2) = (4.213)
The selection function is used as a multiplicative factor of the subgrid
viscosity, leading to the definition of selective models:

Vigs = Vigs (%, 1) 3, (0(x)) (4.214)

in which v is calculated by an arbitrary subgrid viscosity model. It should
be noted that, in order to keep the same average subgrid viscosity value over
the entire fluid domain, the constant that appears in the subgrid model has
to be multiplied by a factor of 1.65. This factor is evaluated on the basis of
isotropic homogeneous turbulence simulations.

Accentuation Technique. Filtered Models

Accentuation Technique. Since large-eddy simulation is based on a. frequency
selection, improving the subgrid models in the physical space requires a better
diagnostic concerning the spectral distribution of the energy in the calculated
solution. More precisely, what we want to do here is to determine if the
exact solution is entirely resolved, in which case the subgrid model should be
reduced to zero, or if there exist subgrid scales that have to be taken into
account by means of a model. When models expressed in the physical space
do not use additional variables, they suffer from imprecision due to Gabor-
Heisenberg’s principle of uncertainty already mentioned above, because the
contribution of the low frequencies precludes any precise determination of the -
energy at the cutoff. Let us recall that, if this energy is zero, the exact solution :
is completely represented and, if otherwise, then subgrid modes exist. In order .
to be able to detect the existence of the subgrid modes better, Ducros [91,92]
proposes an accentuation technique which consists in applying the subgrid -
models to a modified velocity field obtained by applying a frequency high-
pass filter to the resolved velocity field. This filter, denoted HP”, is defined -
recursively as: ;

=
L‘LI’ 1e-10

1e-20 L 2 1 L PR " P | " P L PR
| 10 100 1000 10000 100000
B k -

Fig. 4.17. Energy spectrum of the accentuation solution for different values of the
parameter n (b= = 1, k. = 1000).

The resulting field therefore represents mainly the high frequencies of the
initial field and serves to compute the subgrid model. To remain consistent,
the subgrid model has to be modified. Such models are called filtered models.
The case of the Structure Function model is given as an example. Filtered
versions of the Smagorinsky and Mixed Scale models have been developped
HP (W) ~ A’V , (4.215) by Sagaut, Comte and Ducros [286]. '

HP"(W) = HP(HP" '(m)) . (4.216)‘:

We note that the application of this filter in the discrete case results in
a loss of localness in the physical space, which is in conformity with Gabor-
Heisenberg’s principle of uncertainty. We use Egpn (k) to denote the energy -
spectrum of the field thus obtained. This spectrum is related to the 1mt1al
spectrum E(k) of the resolved scales by: 3

2 For a Laplacian type filter discretized by second-order accurate finite difference
. scheme iterated three times (n = 3), Ducros finds b® = 64,000 and 3+ = 9.16.
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Table 4.2. Values of the Structure Function model constant for different iterations
of the high-pass filter.

n 0 1 2 3 4
c™ 00637 0.020 0.0043 0.000841 1.57-1074

Filtered Structure Function Model. We define the second-order structure func-
tion of the filtered field:

T (%7, 8) = /| N [HP™ () (x, £) — HP"(@)(x + ', ) d*%' , (4.219) .

for which the statistical average over the entire fluid domain, denoted

~=HP™ . . . . ;

(Fy )(r1), is related to the kinetic energy spectrum by the relation:
ke

<F2Hpn>(r,t)=4 Eypn (k) (1— Sink(%z))dk: . (4‘220') :
0 "

According to the theorem of averages, there exists a wave number k, €
[0, k] such that:

Damping Functions for the Region Near a Wall. The presence of
a solid wall modifies the turbulence dynamics in several ways, which are
‘discussed in Chap. 9. The only fact concerning us here is that the presence of
a wall inhibits the growth of the small scales. This phenomenon implies that
the characteristic mixing length of the subgrid modes A¢ has to be reduced
in the near-surface region, which corresponds to a reduction in the intensity
of the subgrid viscosity. To represent the dynamics in the near-wall region
torrectly, it is important to make sure that the subgrid models verify the
good properties in this region. In the case of a canonical boundary layer (see
Chap. 9), the statistical asymptotic behavior of the velocity components and
subgrid tensions can be determined analytically. Let u be the main velocity
component in the z direction, v the transverse component in the y direction,
and w the velocity component normal to the wall, in the 2 direction. An
‘asymptotic_analysis yields the following decay laws:

—HP"
Txen (k) = ()t . (4.221)

s(afie) " (1~ sin(€)/€) de :

Using a Kolmogorov spectrum, we can state the equality:

E(kc) EHpn(k*) H
i : (4.222)

Considering this last relation, along with (4.217) and (4.218), the subgrid

viscosity models based on the energy at cutoff are expressed: (w) o 2, (v) o 2, (W) o 22, (4.226)
2 K73 RN 2 2 4
<ngs> = g—k—ci‘/‘é—' k—c E)ZEHP"' (]{3*) N (4223) <T11> x 2z, (TZZ> x 27, <T33> Xz,

(113} o 2°, (T12) o 2%, (Ta3) 2% (4.227)

Experience shows that it is important to reproduce the behavior of the
component 713 in order to ensure the quality of the simulation results. For a
subgrid viscosity model, we deduce the following law from relations (4.226)
and (4.227):

in which:

N A S S OTE )
<k_> = 1=5/3+yn ™ ' (4.224)

: / (1 sin(€) /€) de
0

By localizing these relations in the physical space, we deduce the ﬁ‘ltereri
structure function model: i

(Vegs) ox 2° . (4.228)

We verify that the model is based on the large scales alone do not verify
this behavior and therefore have to be modified. This is done by introducing
amping functions. The usual relation: ’

—HP™, — .\ /2
B D)
Vegs(X, 4,1) = 348 g (b_") o 1/2; As=CA (4.229)
([ e a-smeoa) ; |
0 is.replaced by:
)= [=HP" — ; —
= CWAVF, (x,4,t) . (4.225 As = CAfu(2) (4.230)

The values of the constant C(™) are given in the following Table:

n which f,(2) is the damping function and z the distance to the wall. From
In practice, Ducros recommends using n = 3. ‘

Van Driest’s results, w  >fine:
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fw(2) =1 —exp(—zu,/25v)

in which the friction velocity u. is defined in Sect. 9.2.1. Piomelli ¢t al. [271]
propose the alternate form:

(4.231)

fw(z) = (1 — eXp (—(ZUT/25U)3))1/2

From this last form we can get a correct asymptotic behavior of the
subgrid viscosity, i.e. a decrease in 21 in the near-wall region, contrary
to the Van Driest function. Experience shows that we can avoid recourse to
these functions by using a dynamic procedure, a filtered model, a selective
model, or the Yoshizawa model. '

(4.232)

4.3.4 Implicit Diffusion

Large-eddy simulation approaches using a numerical viscosity with no explicit ,
modeling are all based implicitly on the hypothesis:

Hypothesis 4.6. The action of subgrid scales on the resolved scales is equiv-
alent to a strictly dissipative action.

Simulations belonging to this category use dissipation terms introduced -
either in the framework of upwind schemes for the convection or explicit,
artificial dissipation term, or by the use of implicit [328] or explicit [93] -
frequency low-pass filters. The approach most used is doubtless the use of
upwind schemes for the convective term. The diffusive term introduced then
varies both in degree and order, depending on the scheme used (QUICK
(187], PPM [66], TVD [68], FCT [27], among others) and the dissipation ;
induced can in certain cases be very close? to that introduced by a physical
model [126]. Let us note that most of the schemes introduce dissipations o
the second and/or fourth order and, in so doing, are very close to subgrid:
models. This point is discussed more precisely in Chap. 7. This approach is
widely used in cases where the other modeling approaches become difficult i
for one of the two following reasons:

— The dynamic mechanisms escape the physical modeling because they are
unknown or too complex to be modeled exactly and explicitly, which is true
when complex thermodynamic mechanisms, for example, interact strongly
with the hydrodynamic mechanisms (e.g. in cases of combustion [60] or
shock/turbulence interaction [185]).

— Explicit modeling offers no a priori guarantee of certain realizability con-
straints related to the quantities studied (such as the temperature or molar -
concentrations of pollutants [214]).

23 n the sense where these dissipations are Jocalized at the same points and are of

the same order of magnitude. e

£
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In cases belonging to one of these two classes, the error committed by

using an implicit viscosity may in theory have no more harmful consequence
on the quality of the result obtained than that which would be introduced
‘ by using an explicit model based on inadequate physical considerations. This
approach is used essentially for dealing with very complex configurations or
- those harboring numerical difficulties, because it allows the use of robust
numerical methods. Nonetheless, high-resolution simulations of case-study .
flows are beginning to make their appearance [272,344].

4.4 Modeling the Backward Energy Cascade Process
4.4.1 Preliminary Remarks

The above models reflect only the backward cascade process, i.e. the domi-
nant average effect of the subgrid scales. The second energy transfer mech-
anism, the backward energy cascade, is' much less often taken into account
in simulations. We may mention two reasons for this. Firstly, the intensity of
this return is very weak compared with that of the forward cascade toward
the small scales (at least on the average in the isotropic homogeneous case)
and its role in the flow dynamics is still very poorly understood. Secondly,
. modeling it requires the addition of an energy source term to the equations
being computed, which is potentially a generator of numerical problems.

Two methods are used for modeling the backward energy cascade:

Adding a stochastic forcing term constructed from random variables and
the information contained in the resolved field. This approach makes it

‘possible to include a random character of the subgrid scales, and each
" simulation can be considered a particular realization. The space-time corre-

lations characteristic of the scales originating the backward cascade cannot
be represented by this approach, though, which limits its physical repre-
sentativeness.

= Modifying the viscosity associated with the backward cascade mechanism

defined in the previous section, so as to take the energy injected at the
large scales into account. The backward cascade is then represented by

‘ _a negative viscosity, which is added to that of the cascade model. This
* approach is statistical and deterministic, and also subject to caution be-

cause it is not based on a physical description of the backward cascade
phenomenon and, in particular, possesses no spectral distribution in k*
predicted by the analytical theories like EDQNM. Its advantage resides
mainly in the fact that it allows a reduction of the total dissipation of
the simulation, which is generally too high. Certain dynamic procedures
for automatically computing the constants can generate negative values of
them, inducing an energy injection in the resolved field. This property is
sometimes interpreted as the capacity of the dynamic procedure to reflect
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the backward cascade process. This approach can therefore be classed in
the category of statistical deterministic backward cascade models.

Representing the backward cascade by way of a negative viscosity is con-
troversial because the theoretical analyses, such as by the EDQNM model,
distinguish very clearly between the cascade and backward cascade terms,
both in their intensity and in their mathematical form [192,193]. This repre-
sentation is therefore to be linked to other statistical deterministic descrip-
tions of the backward cascade, which take into account only an average reduc-
tion of the effective viscosity, such as the Chollet—Lesieur effective viscosity
spectral model.

The main backward cascade models belonging to these two categories are
described in the following. )

4.4.2 Deterministic Statistical Models

This section describes the deterministic models for the backward casca.de'_.
These models, which are based on a modification of the subgrid viscosity
associated with the forward cascade process, are:

1. The spectral model based on the theories of turbulence proposed by Chaéf
nov (p.126). A negative subgrid viscosity is computed directly from the
EDQNM theory. No hypothesis is adopted concerning the spectrum shape
of the resolved scales, so that the spectral disequilibrium mechanisms can
be taken into account at the level of these scales, but the spectrum shape

of the subgrid scales is set arbitrarily. Also, the filter is assumed to be of :

the sharp cutoff type.

2. The dynamic model with an equation for the subgrid kinetic energy
(p.127), to make sure this energy remains positive. This ensures that
the backward cascade process is represented physically, in the sense that

a limited quantity of energy can be restored to the resolved scales by( ;

the subgrid modes. However, this approach does not allow a correct

representation of the spectral distribution of the backward cascade. Only

the quantity of restored energy is controlled.

Chasnov’s Spectral Model. Chasnov [54] adds a model for the backward “
cascade, also based on an EDQNM analysis, to the cascade model already -

described (see Sect. 4.3.1). The backward cascade process is represented de-
terministically by a negative effective viscosity term v, (k|kc), which is of the
form:

F~(klke,t)
2k2E(k,t)

The stochastic forcing term is computed as:

v, (klke,t) = —

(4.233)
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: N ,
F(klks,t) = / dp/ dq@kpq—(l — 22222 — zy2)E(q,t)E(p, t), (4.234)
ke p—k

in which x, y, and z are geometric factors associated with the triad (k, p,q),
and Opp, is a relaxation time described in Appendix B. As is done when
computing the draining term (see Chasnov’s effective viscosity model in Sect.
4.3.1), we assume that the spectrum takes the Kolmogorov form beyond the
cutoff k.. To simplify the computations, formula (4.234) is not used for wave
numbers k. < p < 3k¢. For the other wave numbers, we use the asymptotic
form

EQ(p, t)

F ke, £) = gt / O (t) (4.235)
157 Jie
This expression complete Chasnov’s spectral subgrld model which, though
quite close to the Kraichnan type effective viscosity models, makes it possible
to take into account the backward cascade effects that are dominant for very
small wave numbers.

Localized Dynamic Model with Energy Equation. The Germano-
Lilly dynamic procedure and the localized dynamic procedure lead to the
definition of subgrid models that raise numerical stability problems because
the model constant can take negative values over long time intervals, leading

~ to exponential growth of the disturbances.

This excessive duration of the dynamic constant in the negative state
corresponds to too large a return of kinetic energy toward the large scales
[47]. This phenomenon can be interpreted as a violation of the spectrum real-

* izability constraint: when the backward cascade is over-estimated, a negative

kinetic energy is implicitly defined in the subgrid scales. A simple idea for
limiting the backward cascade consists in guaranteeing spectrum realizabil-
ty?%. The subgrid scales cannot then restore more energy than they contain.
To verify this constraint, local information is needed on the subgrid kinetic
energy, which naturally means defining this as an additional variable in the
simulation.

A localized dynamic model including an energy equation is proposed by
Ghosal et al. [122]. Similar models have been proposed independently by
Ronchi et al. [233,281] and Wong [348]. The subgrid model used is based on
the kinetic energy of the subgrid modes. Using the same notation as in Sect.

(4.3.3), we get:

,]:—2',5 QSgSS,J , (4.236)

Bij = —2A,/d%5i; (4.237)
in which the energies Q% and g2 are defined as:

24 The spectrum E(k) ~1id to be realizable if E(k) > 0, Vk.
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li— ~~ 1
ggs =5 (uzuz - Uﬂh) = §Tii ) (4.238)

One variant of the Germano’s. relation relates the subgrid kinetic energy
2

flux f; to its analog at the level of the test filter Fy:
1 1 .
2 _ U Us Uit ) = .
qsgs - 5 (ulu'L - uiuz) = 57'1'1 . (4239)

Germano’s identity (4.126) is written:

Fj—fi=Z; =U;(p + 2 + 00 /2) — 0, (p + Qs + T /2) ,  (4.244)
in which 7 is the resolved pressure.
To determine the constant Cy, we substitute in this relation the modeled

. — 1 fluxes:
sgs qs2gs + §Lu . (4240) ,
— 9q
The model is completed by calculating qSQgS by means of an additional fi=0CA Tags a;g,s ’ (4.245)
evolution equation. We use the equation already used by Schumann, Horiuti, !
and Yoshizawa, among others (see Sect. 4.3.2): = 0Q2,.
7
0% | Oujqg - (g2,)""
s Ilses T sg hich leads to:
a oz nigbiy — G == e Teads
8 (= =04 8%¢? Z; = X;Cy — Y;C. : 4.247
+Coz— | Ay/d2, Joge | | ), 2 e (4.241) e (4.247)
Oz; 0z, 020, in which
in which the constants C; and Cy are computed by a constrained localized ~ 802
dynamic procedure described above. The dynamic constant Cy is computed X;=A4A ggs g e (4.248)
by a localized dynamic procedure. T
This model ensures that the kinetic energy qsgs will remain positive, i.e. 82
that the subgrid scale spectrum will be realizable. This property ensures that Y;=A4 9% 3 L (4.249)
the dynamic constant cannot remain negative too long and thereby destabilize i

the simulation. However, finer analysis shows that the realizability conditions
© concerning the subgrid tensor 7 (see Sect. 3.3.5) are verified only on the

condition:
N NC: '
o< F (4.242)

C3Als,| T 4T 3As,

Using the same method as was explained for the localized dynamic pro-
cedure, the constant C is evaluated by minimizing the quantity:

'/'(zj — X;Co + Y’j@) (Z]- — X;Cy + 17{52) . (4.250)

By analogy with the preceding developments, the solution is obtained in
the form:
where s, and s, are, _respectively, the largest and smallest eigenvalues of

the ‘stra:u? rate tensor S..The model proposed therefore does not ensure the Cs(x) = { oo (%) + / Ko, (%,7)Ca(y) dgy} , (4.251)
realizability of the subgrid tensor. 4
The two constants C; and Cy are computed using an extension of the . o i
. . . . . in which:
constrained localized dynamic procedure. To do this, we express the kinetic
energy QZ,, evolution equation as: 1 : . .
for0) = 3w (0% - Y6 [ Z0)66-vay)
2 ~ o 2 13/2 X;(x)X;(x)
Wsgs | TQugs _ 5 (@) (4.252)
ot oz, R A

Cy Cy o
Key(x,y) = ICA' (x,¥) +X/j fx)(;;(?() K3 (x,y) ’

in which

(4.253)

J

o ( 00k, 9%Q2,,
+ 02%‘; ( sgs ERE + l/axjamj . (4243)
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K2 (x,y) = X;(x)Y;(y)Gx~y) , (4.254)

[ (x=001+3G1) (x - 90 +9G1) (4260

IC? (x,y) = Y;(x)Y;(y / Gz — x)G(z —y) Pz (4.255) by a constrained localized dynamic procedure, which is written:
This completes. the computation of constant Cy. To determine the con- Ci(x) = [fcl (x) + / Ke, (x,¥)Ch (Y)dgy] ’ (4.265)
stant C1, we substitute (4.240) in (4.243) and get: +
o o L in which
aqggs + 8ﬁquzgs EBF Ty BZQggs (4 256)
. = r ? ' 1
ot Oz, Oz, Oz;0z; fo,(x) = ] (¢( Yx(x ¢(X)/X(y G(x —y)d3y > ,  (4.266)
in which F is defined as:
’ K (x,y)+ K (v,%x) — K& (x,5)
~ (@) 27 - Ko (x,y) = —AD AW s\ , 4.267
= Ejsz] + 1( ;—gs) . Vl 19} Ln 1 aLu aujLn . (4257) 1( ) ¢(X)¢(X) ( )
A 2 8.’13]'81}3' (9t 8Ij in Wthh
Applying the test filter to relation (4.241), we get: c
. Kt (%y) = o(xp(y)Gx—y) (4.268)
902 Ot.dt. o 3/2 25
_qsg + u]qsgs - g _ Ol (ngS) + % +u 0 ngs (4 258)
o T o 921 2 oz; tVomy0m; " XS (x, ) = B / Gz -x)G@ - y)dz (4.269)

By eliminating the term 8@;/81& between relations (4.256) and (4.258),

then replacing the quantity F; — f] by its expression (4.244) and the quantity
T;; by its value as provided by the Germano identity, we get:

which céimpletes the computation of the constant Cj.

4.4.3 Stochastic Models

x=¢C, —¢C1 : (4.259) Models belonging to this category are based on introducing a random forcing
in which term into the momentum equations. It should be noted that this random
character doés not reflect the space-time correlation scales of the subgrid
- 3 dp; 1 8L fluctuations, which limits the physical validity of this approach and can raise
X = 7181 = TigSij — Lij 5, iyt 5" Dth i ) 6“ ,  (4.260) numerical stability problems. It does, however, obtain forcing term formula-
% T30k , tions at low algorithmic cost. The models described here are:
(ngs)s/z/ , (4.261) 1. Bertoglio’s model in the spectral space (p.132). The forcing term is con-
structued using a stochastic process, which is designed in order to induce
3/2 _ the desired backward energy flux and to possess a finite correlation time
= Sgs) /A, (4.262) scale. This is the only random model for the backward cascade deerived
and in the spectral space.
2. Leith’s model (p.133). The forcing term is represented by an acceleration
pj = 5]. (@ _l_%i /2) ~;(p _‘f‘ﬁ’zm /2) . (4.263) vector deriving from a vector potential, whose amplitude is evaluated by

simple dimensional arguments. The backward cascade is completely de-
coupled from forward cascade here: there is no control on the realizability

The symbol D, designates the material derivative 8/t + @;0/0z;. The
of the subgrid scales.

constant C; is computed by minimizing the quantity
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3. Mason-Thomson model (p.135), which can be considered as an improve-
ment of the preceding model. The evaluations of the vector potential
amplitude and subgrid viscosity modeling the forward cascade are cou-
pled, so as to ensure that the local equilibrium hypothesis is verified. This
ensures that the subgrid kinetic energy remains positive.

4. Schumann model (p.136), in which the backward cascade is represented
not as a force deriving from a vector potential but rather as the divergence
of a tensor constructed from a random solenoidal velocity field whose
kinetic energy is equal to the subgrid kinetic energy.

5. Stochastic dynamic model (p.137), which makes it possible to calculate
the subgrid viscosity and a random forcing term simultaneously and dy-
namically. This coupling guarantees that the subgrid scales are realizable,

but at the cost of a considerable increase in the algorithmic complexity
of the model.

Bertoglio Model. Bertoglio and Mathieu [22,23] propose a spectral stochas-
tic subgrid model based on the EDQNM analysis. This model appears as a

new source term f;(k,¢) in the filtered mometum equations, and is evaluated

as a stochastic process. The following constraints are enforced:

— J must not modify the velocity field incompressibility, i.e. k; fi(k,t) = 0;

— [ will have a Gaussian probability density function;

— The correlation time of f, noted ¢ £, is finite;

— [ must induce the desired effect on the statistical second-order moments
of the resolved velocity field:

(00T 000+ 00T 0) =Tyt () (a2m

where Ti;(k, t) is the exact backward transfer term appearing in the vari-

ation equation for (a;(k, t)ﬁ; (k,t)) and L the size of the computational
domain in physical space.

Assuming that the response function of the simulated field is isotropic
and independent of f, and that the time correlations exhibit an exponential
decay, we get the following velocity-independent relation:

3
G0 00+ oot = T5000 () (g +5)
(4.271)

where 0(k, t) is a relaxation time evaluated from the resolved scales. We now
have to compute the stochastic variable f;. The authors propose the following
algorithm, which is based on three random variables a,b and ¢
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h At o At . n
i = (1‘ r) A+ RDBT 5 expliznaln D)
f

+ hé’é)ﬁi’z’“)s/ —f—texr)(i%c("“)) : (4.272)
- 7

AL\ N
A = (1— ;f—t) 79+ hé’%’ﬂéfl)\/ge}tp(ﬁwb( )
f

-+ HPR £ explizmeln i) (4273
f -

where the supserscipt (n) denotes the value at the nth time step, At is the
value of the time step, and hy;(k,t) = (fi(k,t)f; (k,t)). Moreover, we get the
complementary set of equations, which close the system:

n 1 n t n >n 1
B = — (0 - - e

Ry
o2t ) (4.274)
ty )
1 ¢ +1
(B = 5 (05— WG - P07
h’22
fo- 2t (4.275)
ts
n 1 n )y b
ﬂg%l) £2+1) = “‘_—‘(n) “(_n) ((hgzﬂ) ‘hgz))j%
hll hll ‘
At
+h3) (2 - —)) , (4.276)
tf
B = (85?2, (4.277)

which completes the description of the model. The resulting random force
satisfies all the cited constraints, but it requires the foreknowledge of the h;;
tensor. This tensor is evaluated using the EDQNM theory, which requires
the spectrum of the subgrid scales to be known. To alleviate this problem,
arbitrary form of the spectrum can be employed.

Leith Model. A stochastic backward cascade model expressed in the phys-
ical space was derived by Leith in 1990 [184]. This model takes the form of
a random forcing term that is added to the momentum equations. This term
is computed at each point in space and each time step with the introduction
of a vector potential ¢® for the acceleration, in the form of a white isotropic
noise in space and time. The random forcing term with null divergence f® is
deduced from this vector potential.
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We first assume that the space and time auto-correlation scales of the
subgrid modes are small compared with the cutoff lengths in space A and in
time At associated with the filter?®. This way, the subgrid modes appear to
be de-correlated in space and time. The correlation at two points and two
times of the vector potential #® is then expressed:

(7 (x, )R (x', 1) = o (x,1)8(x — x')6(t — )b, (4.278)

in which ¢ is the variance. This is computed as:

1
o) = [af [ExGmoged ) . a2)
Simple dimensional reasoning shows that:

o(x,t) ~ [SPA . (4.280)

Also, as the vector potential appears as a white noise in space and time
at the fixed resolution level, the integral (4.279) is written:

amnzgﬁ@@ﬁ@wﬂmt. (4.281)

Considering relations (4.280) and (4.281), we get:

G, 60 0) TSI (1282)

The shape proposed for the kth component of the vector potential is:

#° = Cy|SPPA A2 | (4.283)

in which C}, is a constant of the order of unity, At the simulation time cutoff
length (i.e. the time step), and g the random Gaussian variable of zero average
and variance equal to unity. The vector f® is then computed by taking the
rotational of the vector potential, which guarantees that it is solenoidal. =

In practice, Leith sets the value of the constant Cp, at 0.4 and applies
a spatial filter with a cutoff length of 24, so as to ensure better algorithm
stability.

25 We again find here a total scale separation hypothesis that is not verified in
reality.
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Mason-Thomson Model. A similar model is proposed by Mason and
Thor:son [223]. The difference from the Leith model resides in the scaling of
the vector potential. By calling Ar and A the characteristic lengths of the sub-
grid scales and spatial filter, respectively, the variants of the resolved stresses
due to the subgrid fluctuations is, if Ay < A, of the order of (Ag/A)%uf,
in which ue is the characteristic subgrid velocity. The amplitude a of the
fluctuations in the gradients of the stresses is:

A3/2

~ 22
a~Z5/2ue ; » (4.284)

which is also the amplitude of the associated acceleration. The corresponding
kinetic energy variation rate of the resolved scales, g2, is estimated as:

3

2
94; = a’te & %fgugte , (4.285)

bt
in which ¢, is the characteristic time of the subgrid scales. As te ~ A¢/uc and

the dissipation rate is evaluated by dimensional arguments as € ~ ul/Ag, we
can say:

oqf _ . A2
L = Cp—¢e . 4.286
ot Cb .Z5 € ( )

The ratio Ag/A is evaluated as the ratio of the subgrid scale mixing length
to the filter cutoff length, and is thus equal to the constant of the subgrid
viscosity models discussed in Sect. 4.3.2. Previous developments have shown
that this constant is not unequivocally determinate, but that it is close to
0.2. The constant C}, is evaluated at 1.4 by an EDQNM analysis.

The dissipation rate that appears in equation (4.286) is evaluated in light
of the backward cascade. The local subgrid scale equilibrium hypothesis is
expressed by:

— A
~TijSi; =€+ Cb”_’A_—g'E ; (4.287)

in which 7;; is the subgrid tensor. The term on the left represents the
subgrid kinetic energy production, the first term in the right-hand side the
dissipation, and the last term the energy loss to the resolved scales by the
backward cascade. The dissipation rate is evaluated using this last relation:

e = —Tij Sij
14+ (Af / Z)S ’
which completes the computation of the right-hand side of equation (4.286),

with the tensor 7;; being evaluated using a subgrid viscosity model. This
equation can be re-v  ten as:

(4.288)
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9g?
ot

. . 9 . . .
in which o7 is the sum of the variances of the acceleration component am-

plitudes. From the equality of the two relations (4.286) and (4.289), we can
say:

=d’At (4.289)

A? €
AS At

The vector potential scaling factor a and o2 are related by:

_ 22
a=4fo2 = . (4.201)

To complete the model, we now have to evaluate the ratio of the subgrid
scale characteristic time to the time resolution scale. This is done simply by
evaluating the characteristic time £, from the subgrid viscosity vsgs computed
by the model used, to reflect the cascade:

o =Gy (4.290)

AZ
te=—L | (4.292)

Vsgs

which completes the description of the model, since the rest of the procedure
is the same as what Leith defined.

Schumann Model. Schumann proposed a stochastic model for subgrid ten-
sor fluctuations that originate the backward cascade of kinetic energy [299].
The subgrid tensor 7 is represented as the sum of a turbulent viscosity model
. and a stochastic part RS

- 2
Tij = Vsgsdij + gqggséij +R . (4.293)

The average random stresses Rf; are zero:

(R%) =0 . (4.294)
They are defined as:
st 2 2
R‘ij = Ym | ViV5 — g(ngséij ) (4295)

in which 7, is a parameter and v; a random velocity. From dimensional
arguments, we can define this as:

245
v = ngi ) (4.296)

in which g; is a white random number in space and has a characteristic
correlation time 7,:
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‘ {9) =0 , (4.297)
) (gi(x,1)g; (%', 1)) = 63;0(x — x')exp(|t — t'|/m) - (4.298)

The v; field is made solenoidal by applying a projection step. We note
that the time scale 7, is such that:

i

Toy/ @R/ A1 . (4.299)

The parameter -y, determines the portion of random stresses that gen-
erate the backward cascade. Assuming that only the scales belonging to the
interval [k, nk.] are active, for a-spectrum of slope of —m we get:

nkc
/ k2mdk
2 kc S 1—2m

Tm = )
/ k=2 dk
k

C

(4.300)

For n = 2 and m = 5/3, we get vm = 0.90. The subgrid kinetic energy

vqus is evaluated from the subgrid viscosity model.

Stochastic Localized Dynamic Model. A localized dynamic procedure
including a stochastic forcing term was proposed by Carati et al. [47]. The
contribution of the subgrid terms in the momentum equation appears here
as the sum of a subgrid viscosity model, denoted Cyf;; using the notation of
Sect. 4.3.3, which models the energy cascade, and a forcing term denoted f:
8Tij . 8Cd,8ij :
bz, = —————amj +fi . | (4.301)
The f;; term can be computed using any subgrid viscosity model. The
force f is chosen in the form of a white noise in time with null divergence in
space. The correlation of this term at two points in space and two times is
therefore expressed:

il ) 5, )) = A2(x, ) Hiy(x — x)3(t —¥) . (4.302)

The statistical average here is an average over all the realizations of f
conditioned by a given velocity field u(x,t). The factor A? is such that
H;i(0) = 1. Since a stochastic term has been introduced into the subgrid
model, the residual E;; on which the dynamic procedure for computing the
constant Cy is founded also possesses a stochastic nature. This property will

therefore be shared by the dynamically computed constant, which is not

acceptable. To find the original properties of the dynamic constant, we take
a statistical average of the residual, denoted (Ej;), which gets rid of the
random terms. The constant of the subgrid viscosity model is computed by a
localized dynamic procedure based on the statistical average of the residual,
which is written:
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(Bij) = Lij + Caffij — Cacij - (4.303)

The amplitude of the random forcing term can also be computed dynam-
ically. To bring out the non-zero contribution of the stochastic term in the
statistical average, we base this new procedure on the resolved kinetic energy
balance at the level of the test filter Q2 = Uil /2. The evolution equation of
this quantity is obtained in two different forms (only the pertinent terms are
detailed, the others are symbolized):

8Q? ~ 0
0Q? ~ 0 ([ ~

L= —Uj— Cafii + Ly + 90 ) +E7 . (4305
o By (Cobi+ L 0 ) + &7 )

_ The pressure terms P and p are in equilibrium with the velocity fields
1 and 1, respectively. The quantities £ and £+ are the backward cascade
energy injections associated, respectively, with tﬁe forcing term F computed
directly at the level of the test filter, and with the forcing term f computed
at the first level and then filtered. The difference between equations (4.304)
and (4.305) leads to:

ZEEF——SJ:——g#O , (4.306)
in which the fully known term g is of the form:
~ 8 T ~
g = ui% (C’daij + szj - Cd,gij - Lij — péij) . (4307)
g .

The quantity Z plays a role for the kinetic energy that is analogous to
the residual E;; for the momentum. Minimizing the quantity

Z= / (2)? (4.308)

can thus serve as a basis for defining a dynamic procedure for evaluating the
stochastic forcing.

To go any further, the shape of the f term has to be specified. To simplify
the use, we assume that the correlation length of f is small compared with
the cutoff length A. The function f thus appears as de-correlated in space,
which is reflected by:

(&) = 54%001) (4.309)

In order to be able to calculate & dynamically, we assume that the back;
ward cascade is of equal intensity at the two filtering levels considered, i.e.

(&) = (€r) - o (4.310)
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Also, since f is de-correlated at the A scale, we assume:

&< (&) = (Er) (4.311)
which makes it possible to change relation (4.306) to become

(Z)=(r)~g . (4.312)

We now choose f in the form:

fi = Pij(Aej) (4.313)

in which e; is a random isotropic Gaussian function, A a dimensioned con-
stant that will play the same role as the subgrid viscosity model constant,
and F;; the projection operator on a space of zero divergence. We have the
relations:

(es(x,1)) =0 , (4.314)

1
{es(x, t)e; (%', ) = 551-]-5@ ~tYs(x—x') . (4.315)
Considering (4.313), (4.315) and (4.309), we get:
(&) = Lz 1y (4.316)
) 37
The computation of the model is completed by evaluating the constant

A by a constrained localized dynamic procedure based on minimizing th
functional (4.308), which can be re-written in the form: ‘

Z[A) = / (4319)2 : (4.317)



5. Functional Modeling:
Extension to Anisotropic Cases

5.1 Statement of the Problem

The developments of the previous chapters are all conducted in the isotropic
framework, which implies that both the filter used and the flow are isotropic.’
They can be extended to anisotropic or inhomogeneous cases only by localiz-
ing the statistical relations in space and time and introducing heuristic pro-
cedures for adjusting the models. But when large-eddy simulation is applied
to inhomogeneous flows, we very often have to use anisotropic grids, which
corresponds to using a anisotropic filter. So there are two factors contributing
to the violation of the hypotheses underlying the models presented so far: fil-
ter anisotropy (respectively inhomogeneity) and flow anisotropy (respectively
inhomogeneity).

This chapter is devoted to extensions of the modeling to anisotropic cases.
T'wo situations are considered: application of a anisotropic homogeneous filter
to an isotropic homogeneous turbulent flow, and application of an isotropic
filter to an anisotropic flow.

5.2 Application of Anisotropic Filter to Isotropic Flow

The filters considered in the following are anisotropic in the sense that the
filter cutoff length is different in each direction of space. The different types
of anisotropy possible for Cartesian filtering cells are represented in Fig. 5.1.

In order to use an anisotropic filter to describe an isotropic flow, we are
first required to modify the subgrid models, because theoretical work and
numerical experiments have shown that the resolved fields and the subgrid
thus defined are anisotropic [159]. For example, for a mesh cell with an aspect
ratio Ay / A1 =8, A, /Zl = 4, the subgrid stresses will differ from their values
obtained with an isotropic filter by about ten percent. It is very important to
note, though, that this anisotropy is an artifact due to the filter but that the
‘dynamic of the subgrid scales still corresponds that of isotropic homogeneous
turbulence.

On the functional modeling level, the problem is in determining the char-
acteristic length that has to be used to compute the model.

Two approaches are available:
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3 4
' 5
‘
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Deardorff’s Proposal. The method most widely used today is without
doubt the one proposed by Deardorff [76], which consists in evaluating the
filter cutoff length as the cube root of the volume Vo of the filtering cell (2.
Or, in the Cartesian case:

|
>

Ax) = (Ar(x) B (x)As(x))* (5.1)

in which A;(x) is the filter cutoff length in the ith direction of space at
jposition x.

Extensions of Deardorff’s Proposal. Simple extensions of definition (5.1)
are often used, but are limited to the case of Cartesian filtering cells:

Ax) = (@2 (x) + Bx) + B)/3 (5.2)

Fig. 5.1. Diferent types of filtering cells. Isotropic cell (on theleft): Ay = Ag = Az :
pancake-type anisotropic cell (center): A; < Ay~ Ag; cigar-type anisotropic cell

(vight): Ay m Ay < As. A(x) = max (Zl (X),ZQ(X),Z;:,(X)) - (5.3)

Proposal of Scotti et al. More recently, Scotti, Meneveau, and Lilly [305]
proposed a new definition of A based on an improved estimate of the dissi-
ation rate € in the anisotropic case. The filter is assumed to be anisotropic
but homogeneous, é.e. the cutoff length is constant in each direction of space.
" We define A = max(4A;, Ay, As). Aspect ratios of less than unity,
constructed from the other two cutoff lengths with respect to Apax, are
enoted a1 and as®. The form physically sought for the anisotropy correction
is:

— The first consists in defining a single length scale for representing the ﬁlt
This lets us keep models analogous to those defined in the isotropic casé.
using for example scalar subgrid viscosities for representing the backwari
cascade process. This involves only a minor modification of the subgrl_
models since only the computation of the characteristic cutoff scale i
modified. But it should be noted that such an approach can in theon.
be valid only for cases of low anisotropy, for which the different cuto
lengths are of the same order of magnitude.

— The second approach is based on the introduction of several characteristi
length scales in the model. This sometimes entrains major modifications i
the isotropic models, such as the definition of tensorial subgrid viscosities -
to represent the forward cascade process. In theory, this approach takes the
filter anisotropy better into account, but complicates the modeling stage

i

Z = Zisof(a'la a’2) 3 (54)

it which Ajse is Deardorff’s isotropic evaluation compﬁted by relation (5.1).
Using the approximation:

<E> = Z2<2-§ij§ij>3/z 5 (5.5)

5.9.1 Scalar Models and the following equality, which is valid for a Kolmogorov spectrum,

These models are all of the generic form A = A(Ay, Ay, Az). We presen '
here: ,-,u; i

BSig) = 6252 [ 1B K (5.5)

where G (k) is the kernel of the anisotropic filter considered, after calculation
we get: *

K R ~3/4
A= (2—7‘: / |G(k)12k‘5/3d3k> . (5.7)

Considering a sharp cutoff filter, we get the following approximate relation
by integrating equation (5.7):

1. Deardorff’s original model and its variants (p.142). These forms are em
pirical and have no theoretical basis. All we do is simply to show that they ‘
are consistent with the isotropic case, i.e. A = 4A; when Ay = Ag)

2. The model of Scotti et al. (p.143), which is based on a theoretxcal analysis |
considering a Kolmogorov spectrum with an anisotropic homogeneops
filter. This model makes a complex evaluation possible of the filter cutoff ;
length, but is limited to the case of Cartesian filtering cells. '

LN

! For example, by takinG *max = A3, we get ay = Ay /Ai and ag = Az /4.
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1. The model of Bardina et al. (p.145), which describes the geometry of the
filtering cell by means of six characteristic lengths calculated from the
inertia tensor of the filtering cell. This approach is completely general and
is a applicable to all possible types of filtering cells (Cartesian, curvilinear,
and other), but entrains a high complexification in the subgrid models.

2. The model of Zahrai et al. (p.146), which is applicable only to Cartesian
cells and is simple to include in the subgrid viscosity models.

f(a1,a2) = cosh \/% [(lna1)? ~Inaslnas + (Inag)?] . (58)

1t is interesting to note that the dynamic procedure (see Sect. 4.3.3) for the
computation of the Smagorinsky constant can be interpreted as an implicit
way to compute the f(a1,a2) function [304]. Introducing the subgrid mixing
length Ay, the Smagorinsky model reads

Vsgs = A§l~8—| (59)
CaZin, |3 (5.10)
= (CsAisof(a1,a2))*[S] (5.11)

where Cy is the value of the constant computed using a dynamic procedure,
and Cfs the theoretical value of the Smagorinsky constant evaluated through
the canonical analysis. A trivial identification leads to:

Proposal of Bardina et al.

il

Definition of a Characteristic Tensor. These authors [12] propose replacing
the isotropic scalar evaluation of the cutoff length associated with the grid
by an anisotropic tensorial evaluation linked directly to the filtering cell ge-
ometry: V(x) = (A1(x)Az(x)A3(x)). To do this, we introduce the moments
of the inertia tensor 7 associated at each point x:

Iij(x):v—(%x—)/v:c,-xjdV . - (515)

Since the components of the inertia tensor are homogeneous at the square
of a length, the tensor of characteristic lengths is obtained by taking the
square root of them. In the case of a pancake filtering cell aligned with the
axes of the Cartesian coordinate system, we get the diagonal matrix:

al,az =4/ Gd/Cs . (5.12)

This interpretation is meaningful for positive values of the dynamic con-
stant. A variant can be derived by using the anisotropy measure f(as,az) in-
stead of the isotropic one inside the dynamic procedure (see equation (5.10)),

yielding new definitions of the tensors a;; and f;; appearing in the dynamic 5

procedure (see Table 4.1). Taking the Smagorinsky model as an example, we 9 A 02 0
get: Ly = 3| 0 A, 0 . (5.16)
0 0 A

Bis = —2(Aiso f (@1,2))?[5]8;, iz = —2(jisof(51a52))21§|—§z‘j , (5.13)

where f(@;,a2) and f(@;,a2) are the anisotropy measures associated to the
first and second filtering levels, respectively. The corresponding formulation
of the f function is now:

Application to the Smagorinsky Model. As we model only the anisotropic part
of the subgrid tensor, the tensor Z is decomposed into the sum of a spherical
term Z' and an anisotropic term Z¢:

Iij = Iiéij + (Iij — TJU) = Ziéij +Ig] R ' (517)

flay,a2) = v/Ca/(CsAio) (5.14) with |
;1 1—2 —2 —2

5.2.2 Tensorial Models '= gI’ck = g(Al +4;+4;) (5.18)

Modifying the usual Smagorinsky model, the authors finally propose the

The tensorial models presented in the following are constructed empirically, following anisotropic tensorial model for deviator of the subgrid tensor 7:

with no physical basis. They are justified only by intuition and only fo
highly anisotropic filtering cells of the cigar type, for example (see Fig. 5.1).
Representing the filter by a single and unique characteristic length is no longer
pertinent. The filter’s characteristic scales and their inclusion in the subgrid
viscosity model are determined intuitively. Two such models are described:

Tkk(i” = 01T|§|
+ Cy|S| ( 19k + LikSki — Izkgkz%) (5.19)

I5]

1
+ C’s—ii—( kL1 Sk — 3 mkImlSlcl6m> ,

in which C;, Cy and Cs are constants to be evaluated.
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Proposal of Zahrai et al. ®;i(k) = (A'*(k)A' &) (5.23)

which is related to the double correlations in the physical space by the rela-

tion:
) (x) = / / / Oy (KK . (5.24)

Starting with the Navier—Stokes equations, we obtain the evolution equa-
tion (see Appendices A and B):

Principle. Zahrai et al. [364] proposed conserving the isotropic evaluation of
the dissipation rate determined by Deardorff and further considering that :
this quantity is constant over each mesh cell:

(e) = (Zl(x)Zz(x)Zg(x))2/3 (25::5,)%2 . (5-20)’ ,,,‘

On the other hand, when deriving the subgrid model, we consider that "
the filter’s characteristic length in each direction is equal to the cutoff length ,
in that direction. This procedure calls for the definition of a tensorial model '

for the subgrid viscosity. Bz,

) (i 1)+ 5 1)

(gt-+2uk2) (k) + 6<”’><1> (k) + 5<“’>c1> 1(k)

Application to the Smagorinsky model. In the case of the Smagorinsky model,
we get for component k:

28

o _ — 0 a
(vegs) = C1(B1Bag) /O (Ar)*3(25:;5:5)%% (5.21) - - &: i on s (k)
where C is a constant. = Pu(k)Ti;(k) + Pu(k)Tyj;(k) (5.25)

where

5.3 Application of an Isotropic Filter
to an Anisotropic Flow

Ty () = o / / / (wupu(~k —p)dp ,  (5.26)

o and
We will now be examining the inclusion of subgrid scale anisotropy in the

functional models.

The first part of this section presents theoretical results concerning subs
grid scale anisotropy and the interaction mechanisms between the large and
small scales in this case. These results are obtained either by the EDQN
theory or by asymptotic analysis of the triadic interactions.

The second part of the chapter describes the modifications that have been
proposed for functional type subgrid models. Only models for the forward
energy cascade will be presented, because no model for the backward cascade
has yet been proposed in the anisotropic case.

Pik) = (53-]' - %—?) ) (5.27)

and where the * designates the complex conjugate number. We then simplify
the equations by integrating the tensor ® on spheres of radius k=cste:

b53 () = / By (K)dAK) (5.28)

and obtain the evolution equations:

5.3.1 Phenomenology of Inter-Scale Interactions

3 2 (ul) a<u3>
(g7 +204°) ) = =00~ S22 60t
Anisotropic EDQNM Analysis. Aupoix [7] proposes a basic analysis ofi: Pilj(k‘) + Sﬁj(k) + P{J’-l(k) + S{}](k) ,
the effects of anisotropy in the homogeneous case using Cambon’s anisotropic.
EDQNM model. The essential details of this model are given in Appendix B
The velocity field u is decomposed as usual into average part (u) and a
fluctuating part u': :

(5.29)

where the terms P!, 8!, P™! and S™ are the linear pressure, linear transfer,
non-linear pressure, and non-linear transfer contributions, respectively. The
linear terms are associated with the action of the average velocity gradient,
and the non-linear terms.with the action of the turbulence on itself.

The expression of these terms and their closure by the anisotropic EDQNM
approximation are give ~"n Appendix B. Using these relations, Aupoix derives

u=(u)+u . (5.22)

To study anisotropic homogeneous flows, we define the " ectral tensor::
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an expression for the interaction between the modes corresponding to wave

numbers greater than a given cutoff wave number k. (i.e. the small or subgrid
scales) and those associated with small wave numbers such that k < k. (i.e.
the large or resolved scales). To obtain a simple expression for the coupling
among the different scales by the non-linear terms P and S™, we adopt the
hypothesis that there exists a total separation of scales (in the sense defined
in Sect. 4.3.2) between the subgrid and resolved modes, so that we can obtain
the following two asymptotic forms:

2 ..
P(k) = —ﬁk“/ Oopp [10 + a(p)) 2P i) (p;éfw(p)dp
+ Tlé%sz / Oopp |i(a(p)+3)p8 (E(p)Hi;(p))

B0 ) (30 431+ %2 ) [p a0

5509 = 2 [~ 60, T [ (L6, 4201, + a0 dp

|

OF
zkz@j(k)ﬁ /k ) Bopp l:5E(p)+ p—az(})l] dp

W) [ o | & {5EGH6) + 0 (B o)

PO H0) { 00 +9)+ ) || o (5.31)
" where E(k) is the energy spectrum, defined as:
1
Ek) = 5¢u(k) (5.32)
and H;;(k) the anisotropy spectrum:
oy Gig(k) 1
Hlj(k) - 2E(k7) 361] . (5'33)

It is easily verified that, in the isotropic case, H;; cancels out by con-
struction. The function a(k) is a structural parameter that represents the
anisotropic distribution on the sphere of radius &, and Oy, the characteristic
relaxation time evaluated by the EDQNM hypotheses. The expression of this
term is given in Appendix B.

These equations can be simplified by using the asymptotic value of the
structural parameter a(k). By taking a(k) = ~4.5, we get:
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. pnl nI 368
_P” (k) + S k4/ ®Opp p2 [45(513 175Hij (p) dp

— 2k%¢y;(k )115 / Oopp [5E( )+ BI;I()p)} dp

+ K2E(k) /k @opp[1502552 (p)H;;(p)
105 5p B0 0) 4 (530

From this equation, it can be seen that the anisotropy of the small scales
takes on a certain importance. In a case where the anisotropic spectrum has
the same (resp. opposite) sign for the small scales as it does for the large, the
term in k* constitutes a return of energy that has the effect of a return toward
isotropy (resp departure from isotropy), and the term in sz(k) represents
an backward energy cascade associated with an increasing anisotropy (resp.
a return to isotropy). Lastly, the term in k2¢;;(k) is a term of isotropic
drainage of energy to the large scales by the small, and represents here the
energy cascade phenomenon modeled by the isotropic subgrid models.

Asymptotic Analysis of Triadic Interactions. Another analysis of inter-
scale interactions in the isotropic case is the asymptotic analysis of triadic
interactions [35, 356].

The evolution equation of the Fourier mode ti(k) is written in the symbolic
form:

280 — 409 = [0 + 0y, (5.35)

where [a(k)], and [a(k)],, represent, respectively, the non-linear terms as-
sociated with the convection and pressure, and the linear term associated
with the viscous effects, defined as:

(600 = 5 Y0 8p) 1 (k- 80— p) (5.36)

with p
Be)ue = (6 - 25 ) wo) (537
k)], = ~vk*t(k) . (5.38)

The evolution equation of the modal energy, e(k) = t(k) - u*(k), is of the
form:

6?9(;{ )= 800 " (1) + e = [e(1),y + 0]y (5.39)
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with ~ The interaction between large and small scales persists in the limit of the
infinite Reynolds numbers. Consistently with the Kolmogorov hypotheses,

. these interactions occur with no energy transfer between the large and

" small scales. Numerical simulations have shown that the energy transfers

are negligible between two modes separated by more than two decades.

— The variation rate of the high frequencies U(p) and ti{q) is directly pro-
portional to the amplitude of the low-frequency mode ti(k). This implies
that the strength of the coupling with the low-frequency modes increases
with the energy of the modes.

'

Vo = —12 [6*(k) - i(p)] [k - Gi(k — p)] +cc | (5.40)

[E)) gy = —20ke(k) (5.41) .

where the symbol cc designates the complex conjugate number of the term
that precedes it. The non-linear energy transfer term brings in three wave -
vectors (k, p, q = k—p) and is consequently a linear sum of non-linear triadic
interactions. We recall (see Sect. 4.1.2) that the interactions can be classified
into various categories ranging from local interactions, for which the norms
of the three wave vectors are similar (i.e. k ~ p ~ g}, to distant interactions
for which the norm of one of the wave vectors is very small compared with
the other two (for example k < p ~ g). The local interactions therefore
correspond to the inter-scale interactions of the same size and the distant
interactions to the interactions between a large scale and two small scales:
Also, any interaction that introduces a (k, p, q) triad that does not verify the
relation k ~ p ~ ¢ is called a non-local interaction.

In the following, we will be analyzing an isolated distant triadic interactio
associated with three modes: k,p and q. We adopt the configuration k
p ~ g and assume that k is large scale located in the energetic portion of th
spectrum. An asymptotic analysis shows that:

Moreover, complementary analysis shows that, for modes whose wave-
length is of the order of the Taylor micro-scale A defined as (see Appendix A):

(5.47)

the ratio between the energy transfers due to the distant interactions and
those due to the local interactions vary as:

[é(kk)]dlstant ~ Rell/ﬁ ,
[e(kk)]local

- Where Re » is the Reynolds number referenced to the Taylor micro-scale and
ihe velocity fluctuation w’. This relation shows that the coupling increases
with the Reynolds number, with the result that an anisotropic distribution
of the energy at the low frequencies creates an anisotropic forcing of the high
frequenmes leading to a deviation from isotropy of these high frequencies.

A competitive mechanism exists that has an isotropy reduction effect
at the small scales. This is the energy cascade associated with non-local
triadic interactions that do not enter into the asymptotic limit of the distant
nteractions. ‘

- For a wave vector of norm &, the ratio of the characteristic times 7(k)cascade

(5.48)

k), =0(@)
[a(p)],y = —i(@ (@) [p- WK +00) , (543

[a(a)], = -1(@ () p- 0" K)) +00) ,

where § is the small parameter defined as

k and 7(k)distant, associated respectively with the energy transfer of the cascade
&= ; <1 mechamsm and that due to the distant interactions, is evaluated as:

The corresponding energy transfer analysis leads to the following rela r(k q

tions: T(k)eascade | constant x (k/Kinjection) /¢ (5.49)
_ T(k)distant

(k)] = 0(5) (5.45 where Kipjection is the mode in which the energy injection occurs in the

ol ’ spectrum. So we see that the distant interactions are much faster than the

energy cascade. Also, the first effect of a sudden imposition of large scale

[é(p)], = — [e(a)l,, = i{u(p) - t(q) [p- (k)] +cc} +O() . (546 anisotropy will be to anisotropize the small scales, followed by competition

between the two mechanisms. The dominance of one of the two depends on a
number of factors, such as the separation between the &k and kipjection Scales,
or the intensity and co” “tency of the anisotropy at the large scale.

Several remarks can be made:
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Numerical simulations [356] performed in the framework of homogeneous
turbulence have shown a persistence of anisotropy at the small scales. How--
ever, it should be noted that this anisotropy is detected only on statistical
moments of the velocity field of order three or more, with first- and second--
order moments being isotropic.

5.3.2 Anisotropic Models

Here we describe the main models proposed in the anisotropic framework.
Except for Aupoix’s spectral model, none of these take explicit account of
the backward cascade mechanism. They are: :

1. Aupoix’s spectral model (p.153), which is based on the anisotropic
EDQNM analysis. The interaction terms are evaluated by adopting a
preset shape of the energy spectra and subgrid mode anisotropy. This
model, which requires a great deal of computation, has the advantage of
including all the coupling mechanisms between large and small scales.

2. Horiuti’s model (p.154), which is based on an evaluation of the anisotropy
tensor of the subgrid modes from the equivalent tensor constructed from
the highest frequencies in the resolved field. This tensor is then used to -
modulate the subgrid viscosity empirically in each direction of space. This
Is equivalent to considering several characteristic velocity scales for rep-
resenting the subgrid modes. This model can only modulate the subgrid
dissipation differently for each velocity component and each directig}’
of space, but does not include the more complex anisotropic tranSfér ;
mechanisms through the cutoff.

3. The model of Carati and Cabot (p.155), who propose a general form 0
the subgrid viscosity in the form of a fourth-rank tensor. The components
of this tensor are determined on the basis of symmetry relations. However
this model is a applicable only when the flow statistically exhibits an axiét_f
symmetry, which restricts its field of validity. i

4. The model of Abba et al. (p.156) which, as in the previous example,
considers the subgrid viscosity in the form of a fourth-rank tensor. Th
model is based on the choice of a local adapted reference system for '
representing the subgrid modes, and which is chosen empirically when -
the flow possesses no obvious symmetries. o

5. Models based on the idea of separating the field into an isotropic part
and inhomogeneous part (p.157), in order to be able to isolate the contri-:
bution of the mean field in the computation of the subgrid viscosity, for
models based on the large scales, and thereby better localize the informa-.
tion contained in these models by frequency. This technique, however, is
applicable only to flows exhibiting at least one direction of homogeneity.

W

E(k)

o
sbho

Fig. 5.2. Aupoix spectrum (kg = 1000)
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Aupoix Spectral Model. In order to take the anisotropy of the subgrid
scales into account, Aupoix [7] proposes adopting preset shapes of the energy
spectra and anisotropy so that the relations stemming from the previously
described EDQNM analysis of anisotropy can be used. Aupoix proposes the
following model for the energy spectrum:

E(k) = Koe®*k™ P exp {f(k/ka)} (5.50)

where

f(z) = exp [—3.5$2 (1 ~exp {6m +1,2 — /19622 — 33.60 + 1.4532})] .

eled by:

(5.51)
This spectrum is illustrated in Fig. 5.2. The anisotropy spectrum is mod-
k OE(k)
Hij(k) = bij |54+ —o—2
=t s+ 5575
—2/3
x[1+7{<k—k———1)7-£(|.7-‘(ﬁ)]){<kk ) ——1}},

(5.52)

~ where F (W) = V X T, kmax is the wave number corresponding to the energy
" spectrum maximum, and H the Heaviside function defined by:

0 if z<0

1 otherwise

H(z) = {

1e-10

1e-20

1e-30

!

10000

Te-d0 b
)

10 100 100000
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and where b;; is the anisotropy tensor defined as:

b 4 u; 15 5.53
ij = qsgs 3 LY ( . )

Horiuti’s Model. Horiuti [141] proposes extending the Smagorinsky model
to the isotropic case by choosing a different velocity scale for characterizing
each component of the subgrid tensor.

Starting with an ordinary dimensional analysis, the subgrid viscosity vggs
is expressed as a function of the subgrid kinetic energy qus and the dissipation
rate €:

2 \2
Vggs = Cl @

To make a better adjustment of the dissipation induced by the subgrid *
model to the local state of the flow, Horiuti proposes replacing equation (5.54) -

by:

(g2)*

Vogs = G121 (5.55)

in which Y is a dimensionless parameter whose function is to regulate the

dissipation rate as a function of the anisotropy of the resolved field. The :

proposed form for Y is:
_ 3E®
235

where E® is the square of a characteristic velocity scale of the subgrid modes.
For example, near solid walls, Horiuti proposes using the fluctuation of the

velocity component normal to the wall, which makes it possible for the model

to cancel out automatically. To generalize this approach, we associate a char-
acteristic velocity Ef; with each subgrid stress 7;;.
In practice, the author proposes evaluating these characteristic veloc1t1es

by the scale similarity hypothesis by means of a test filter indicated by a :

tilde:

Eisj = (T _ﬁi)(ﬁj —'Z_Lj) , (5'57) :

which makes it possible to define a tensorial parameter T;; as:
3(1; — ui) (s — uy)
Zl=1,3(ﬂl —1)?

This tensorial parameter characterizes the anisotropy of the test field
(i — ) and can be considered as an approximation of the anisotropy tensor

Tij =

associated with this velocity field (to within a coefficient of ‘3 §;;). Using a -

(5.54) |

: (5.56)

(5.58) -
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model based on the large scales, Horiuti derives the tensorial subgrid viscosity
Ve, =t
ij

Ve, = (C1A) | F@I|Ts (5.59)
with
F@)=Vxu, o (Vu+V'y) |,

where the constant C is evaluated as it is for the scalar models. He proposes
a model of the general form for the subgrid tensor 7:

‘ 2 2 0u; ot
Tij = 6ij (gK -+ gP) - I/eila—x'; — I/eﬂ—a—-x—: N (560)

where

O,
Z 'LLL - 'LLl) ) P = Velwn_a_a—:?

l\.’)IP—‘

It is important to note that this is a model for the entire subgrid tensor
and not for its deviator part alone, as is the case for the isotropic models.

Carati and Cabot Model. Carati and Cabot [46] propose a tensorial
anisotropic extension of the subgrid viscosity models. Generally, the deviator
79 of the subgrid tensor 7 is modeled as:

T'idj = z]klskl + V”klﬂhl 1 (561)

where the tensors S and Q are defined as:
5=1 (va+vTa), 0= ! (va-vTa)
2 ’ 2

The two viscosities »V) and v(? are fourth-rank tensors theoretically
defined by 81 independent coefficients. However, the properties of the tensors
74,5 and Q make it possible to reduce the number of these parameters.

. The tensors 7@ and S are symmetrical and have zero trace, which entails:

S0 A

z]k:l - Jzkl ’
A0
z]kl - jzlk ’
AU

Vil = 0 ?
s -

mk:k: =0

The tensor () therefore contains 25 independent coefficients. By a similar
analysis, we can say:
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@ _ @

Vijkt = Viki s
2 2
Vi(j/lz = _VJ('il)k )
2
V'i(ik)l =0 . (5.62)

The tensor v therefore contains 15 independent coefficients, which raises

the number of coefficients to be determined to 40.

Further reductions can be made using the symmetry properties of the
flow. For the case of symmetry about the axis defined by the vector n =
(n1,n2,n3), the authors show that the model takes a reduced form that now
uses only four coefficients, Cy, ..., Cy:

_ 2
Tld7 = —chsij — 20, (‘I’L[S—j + 8in; — g?knké‘ij>

1 "
- 4 <nm]~ - é—nzéij> Spnp — 2Cy (ij + niFj) s (5.63)

where 5; = giknk and 7; = ﬁzknkz

Adopting the additional hypothesis that the tensors () and () verify
the Onsager symmetry relations for the covariant vector n and the contravari-
ant vector p:

1 1
Vi(jlzl(n) = Ulgli)‘(n) )

¥
(2) (2)

Vijia(n) = Vi (m)

1 1
vin(e) = viil(-p)

2 2 : /
Vi(jlzz(P) = Vl(cli)j(_p) ) (5.6{1

we get the following reduced form:

d _ <l 2t
Ti; = —211S;; — 2van Sii

where v; and v, are two scalar viscosities and

3”

1 _ 1 _ =L =
i = ﬁ (niSj + smj) — 3—n§Sknk6ij’ Sij =

Carati then proposes determining the two parameters v; and vy by an

ordinary dynamic procedure.

Model of Abba et al. Another tensor formulation was proposed by Abba
et al. [1]. These authors propose defining the subgrid viscosity in the form of -
the fourth-rank tensor denoted Vijki- This tensor is defined as the product of
a scalar isotropic subgrid viscosity viso and an fourth-rank tensor denoted C ne
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whose components are dimensionless constants which will play the role of

. the «calar constants ordinarily used. The tensor subgrid viscosity Vi thus

defined is expressed:

Vijkt = Cz'jkl Viso = Z Caﬁaiaa/jﬁakaalﬁ Viso (566)
a,B8

where a;, designates the ith component of the unit vector a, (a=1,2,3),
Cap is a symmetrical 3 x 3 matrix that replaces the scalar Smagorinsky
constant. The three vectors a, are arbitrary and have to be defined as a
function of some foreknowledge of the flow topology and its symmetries.
‘When this information is not known, the authors propose using the local
framework defined by the following three vectors:

_u _ V(jul) xu B
a; = u ag = W, a; =ag Xay . (567)

The authors apply this modification to the Smagorinsky model. The scalar
viscosity is thus evaluated by the formula:

Viso = AS| . (5.68)
The subgrid tensor deviator is then modeled as:
—2 2. —2 —1
= _2zcijk14 [S]Sh + gdijA Conmit|S)| Sk - (5.69)
Kl

The model constants are then evaluated by means of a dynamic procedure.

~ Models Based on a Splitting Technique. Subgrid viscosity models are

mostly developed in the framework of the hypotheses of the canonical anal-

i ysis, i.e. for homogeneous turbulent flows. Experience shows that the per-
- formance of these models declines when they are used in an inhomogeneous

framework, which corresponds to a non-uniform average flow. One simple

 idea initially proposed by Schumann [298] is to separate the velocity field

into inhomogeneous and isotropic parts and to compute a specific subgrid
term for each of these parts.

In practice, Schumann proposes an anisotropic subgrid viscosity model
for dealing with flows whose average gradient is non-zero, and in particular
any flow regions close to solid walls. The model is obtained by splitting the
deviator part of the subgrid tensor 7¢ into one locally isotropic part and one
inhomogeneous:

Tzdj = —2Uggs (gij - (31',-)) - 2V:gs<§ij> ) (5.70)

where the angle brackets (.) designate an statistical average, which in prac-
tice is a spatial average in the directions of homogeneity in the solution.
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The coeflicients vsgs and v, are the scalar subgrid viscosities representing a
locally isotropic turbulence and an inhomogeneous turbulence, respectively.
Moin and Kim [245] and Horiuti [138] give the following definitions:

Vsgs = ClA \/2 (S” —g >) (EU - <_ij>) 5 (5.71)

sgs - (C2A ) 2<S'LJ><SIJ> ) (572)
where Cy and Cy are two constants. Horiuti recommends C; = 0.1 and Cs
= 0.254, while Moin and Kim use €y = Cs = 0.254. The isotropic part is a
function of the fluctuation of the viscosity gradients, so as to make sure that
the extra-diagonal components thus predicted for the subgrid tensor cancel
out on the average over time. This is consistent with the isotropic hypothesis.

The two characteristic lengths A and A, represent the cutoff lengths for
the two types of structures, and are evaluated as:

A(z) = (A18,43)3(1 — exp(zu, [Av)) (5.73)

2,(2) = Ba(1 — exp(fzur /Av]?) (5.74)

where z is the distance to the solid wall, Ag the cutoff length in the direction :

normal to the surface, and u, the friction velocity at the surface (see Sect.
9.2.1). The constant A is taken to be equal to 25.

This model was initially designed for the case of a plane channel flow. It
requires being able to compute the statistical average of the velocity field, and
. thus can be extended only to sheared flows exhibiting at least one direction of

homogeneity, or requires the use of several statistically equivalent mmulatmns ‘

to perform the ensemble average [48,51].

Sullivan et al. {321] propose a variant of it that incorporates an anisot-
ropy factor (so that the model constant can be varied to represent the field
anisotropy better): ‘

= 2y i — Wi (Sis) - (5.75)

The authors propose computing the viscosity vg,, as before. The Vegs

term, on the other hand, is now calculated by a model with one evolution

equation for the subgrid kinetic energy (see equation (4.108) in Chap. 4). Only -

the subgrid kinetic energy production by the isotropic is included, which is
equivalent to replacing the IT term in equation (4.108) with :

ZVSgS'V( <S¢J>) ( ij <§11>) . (5-76) ‘

The authors evaluate the anisotropy factor from the shearing rates of the

large and small scales. The average per plane of fluctuation homogeneity of -

the resolved strain rate tensor, calculated by
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. \/2< i — (Si3)) (S5 = (Sis))) (5.77)

is used for evaluating the shear of the small scales. The shear of the large
scales is estimated as

§° =1/2(Si)(Si;) - (5.78)
The isotropy factor is evaluated as:

Sl

5+ 5° (5.79)

’Y:



6. Structural Modeling

This chapter describes some of the family of structural models, As has already
been said, these are established with no prior knowledge of the nature of the
interactions between the subgrid scales and those that make up the resolved
field.

These models can be grouped into several categories:

— Those derived by formal series expansions (Sect. 6.1). These models make
no use of any foreknowledge of the physics of the flows, and are based
only on series expansions of the various terms that appear in the filtered
Navier-Stokes equations.

— Those based on transport equations for the subgrid tensor components
(Sect. 6.2). These models, though they require no information concern-
ing the way the subgrid modes act on the resolved scales, require a very
complex level of modeling since all the unknown terms in the transport
equations for the subgrid tensor components have to be evaluated.

— Those constructed from deterministic models for the subgrid structures
(Sect. 6.3). They assume that preferential directions of alignments are
known for the subgrid structures.

— Those that use the physical hypothesis of scale similarity (Sect. 6.4). The
models of the last category are based on the scale similarity hypothesis,
which establishes a correspondence between the statistical structure of the
flow at different filtering levels. The mixed models, which are based on
linear combinations of the functional and structural types (presented in
Sect. 6.5).

— Those based on an explicit reconstruction of the subgrid velocity fluctua-
tions on an auxiliary grid (Sect. 6.6). These models are the only ones which
aim at reconstructing the subgrid motion directly.

~ Those based on specific numerical algorithms, whose errors are designed
to mimic the subgrid forces (Sect. 6.7).
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6.1 Formal Series Expansions

6.1.1 Models Based on Approximate Deconvolution

Differential Interpretation of the Filters. We recall the definition of
filtering by a convolution product:

+oo

b(z) = )Gz —y)dy . (6.1)

— 00

To obtain a differential interpretation of the filtering, we perform a Taylor
expansion of the ¢(y) term about z:

o) =0@) + -9 20 4 1

Introducing this expansion into (6.1), and cons1der1ng the symmetry and
conservation properties of the constants of the kernel G, we get:

#(z) = é(z) + %azi(f) B 22G(2)dz + ...

BTL
;Ll—! aﬁix)/z"G(z)dz-l-...

oW
= ¢@)+ Y Tagg) : (6.3)

=100

~ where a® designates the /th-order moment of the convolution kernel:

+oo
ol :/ 2G(z)dz . (6.4)

The values of the first moments of the box and Gaussian filters are given
in Table 6.1.

Table 6.1. Values of the first five non-zero moments for the box and Gaussian
filters.

a™ n=0 n=2 n=4 n=_6 n=3
box 1 A2 A'/so A48 A° /2304
Gaussian 1 A/12 A48 5A°/576  35A°/6912

For these two filters, we have the estimate:

o™ =0(Aa" . - (6.5)
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With this relation, we can interpret the filtering as the application of
a diffecential operator to the primitive variable ¢. The various terms that

appear in the filtered equations can be re-written using the relation

' _ o0
P =66 -dw=- 3 TR (65)

=100

The subgrid model can only reveal the contribution of the resolved field

@, so it is necessary to evaluate the fluctuation ¢ as a function of this field.

This is done by a reconstruction operation, sometimes called de-filtering or
deconvolution. This operation is performed by inverting relation (6.3) and
writing it in symbolic form:

2 o4
=|Id+ Y GE 55| ¢ (6.7)
l=1,c0
The inverse relation ist:
~1
—o H% —
p=|1d+ >, CGA ] & . (6.8)
l=1,00

By truncating the expansion (6.3) at order p, this becomes?:

o &% —
b= 1d+ZC{A2’m r (6.9)
I=1,p

This last form can be computed immediately from the resolved field.
Limiting the expansion to the second order, the subgrid part is expressed
as: :

2
¢ (z) = _;_a(z)M +O(AY
0%
- = (2)
2a (¢ +O(A ))
=3 () +O(A ) . (6.10)
This can be used to express all the contributions as a function of the

resolved field, with second-order accuracy. The various terms of the Leonard
decomposition are approximated to the second order as:

1 Note that Galdi and Layton [108] use an implicit inversion.
2 This result is obtained using the Taylor expansion

(1 +e)_1 =1—e+0(?)
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2 Sy
Lij = w; ~ 0,0, = %a@) 5?:5_2(@’ ;) + O(A4) , (6.11) we get. for the subgrid viscosity:
— —=1/3  —4/3
C 7 ol o @ 82 " s x AT =3 (6.19)
i EUU; T jup = — - |7 ° u oA .
’ I ! 2 ( “ox2 7 U Oz? ul) +0(4) (6.12) The order of magnitude of the corresponding subgrid tensor is:
The combination of these two terms leads to: —2/3
‘ [Tij] X \/Elsgs x A . (6.20)
Lij+Ci = a® Br _é;] +0(A") . (6.13) This estimation is clearly different from those given previously, and shows

that the subgrid tensor is theoretically dominant compared with the terms
in A°. This last evaluation is usually interpreted as being of the subgrid
Reynolds tensor R;;, while the estimations of the tensors Cy; and L;; given
above are generally considered to be correct. '

A generalized expansion for the whole subgrid tensor is proposed by Carati
et al. [50]. These authors have proved that the differential expansion:

As for the subgrid Reynolds tensor, it appears only as a fourth-order term:

2 82u. 927
Ri; = W], = % (a<2>) %x—”;a&;f +0(@°% | (6.14)
so that it disappears in a second-order expansion of the full subgrid tensor.
In practice, this approach is used only to derive models for the tensors I
and C', which escape functional modeling [43,65,71,72,202]. Certain authors -
also use these evaluations to neglect these tensors when the numerical scheme
produces errors of the same order, which is the case for second-order accurate
schemes.

Finer analysis allows a better evaluation of the order of magnitude of the
subgrid tensor. By using a subgrid viscosity model, i.e.

. © ld o™
W= Cn(@ 2270 (6.21)
0

l,m=

- where ¢(z) and 9(z) are two C*° real functions, Cj,, (G) some real coefficients
which depend explicitly on the filter, is valid for all the filter kernels G such
that:
G(=i(¢ +¢)) 2
: —~clR, i*=-1 . 6.22
G0C(-i) (6:22)

This is in particular true of all symmetric kernels. The resulting general
form of the gradient model deduced from (6.21) is:

Tij = —2WegsSy; (6.15)
and using the local equilibrium hypothesis:
€= 78 = vsgs|S|2 (6.16)
the amplitude of the subgrid tensor can be evaluated as:
|Tij| ~ V5531§| o \fElVsgs . (617) ‘

By basing the computation of the subgrid viscosity on the subgrid kinetic
energy:

Blﬂi 8’”‘@-

Ozt Gzm

Tij = Uity — Uil = > Cim(G) (6.23)

I,m=0,00;(1,m)#(0,0)

Derivation in Spectral Space. The same results can be derived in the spectral

space, but by Taylor expansion of the transfer function G about zero:

ngs ~ Z qSng ? (618) kZ 826(0)

ok 2 om
The preservation of the constants by the filtering process implies that

G(0) = 1. The filtered component is therefore written:

G(k) =G(0) + k 9G(0)

(6.24)

and computing this energy from a Kolmogorov spectrum;

Ve = ( /k OO E(k)dk) v

%) 1/2

o < k“5/3dk)
ke

o (kc)——1/3

x A3 ,

= 8G(0) k2 82G(0) ~
¢(k)_<1+k TR +> b(k) 3 (6.25)

and the fluctuation:
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ok 2 Ok?

F(k)=— (kaG(O) + K °G(0) + ) ak) (6.26) -

Simple algebraic manipulations, which consist in substituting these rela:

tions into those of Sect. 3.3.1, lead to the same results as those that have just °

been explained for the physical space. To do this, we need simply identify
groups of the form k"¢(k) with the term 9"¢(x)/0z™.

Iterative Deconvolution. If the filter kernel G has an inverse G~1, the
latter can also be obtained using the following expansion [319, 320]:

Glxp= Y (I-GFxg¢ , (6.27)

p=0,00
yielding the following reconstruction for the defiltered variable ¢:

<l
S

b=F+ (- +(F—26+8) +.. , (6.28)

or equivalently

S =@F-D+F-25+0) +.. (6.29)

The series are known to be convergent if | — G| < 1. A practical modél :

is obtained by truncating the expansion at a given power. Stolz and Adams
[319] recommend using a fifth-order expansion.

6.1.2 Non-linear Models

There are a number of ways of deriving non-linear models: Horiuti [140],
Speziale [315], Yoshizawa [359], and Wong [348] start with an expansion
in a small parameter, while Lund and Novikov [205] use the mathematical
properties of the tensors comsidered. It is this last approach that will be
described first, because it is the one that best reveals the difference with
the functional models. Kosovic’s simplified model [167] and Wong’s dynamic
model [348] are then described.

Generic Model of Lund and Novikov. We assume that the deviator of
the subgrid tensor can be expressed as a function of the resolved velocity field
gradients (and not the velocity field itself, to ensure the Galilean invariance
property), the unit tensor, and the square of the cutoff length A
1 a4 — = —2
Tij — ngk&j = Tz'j = f(Sij, Qij,éij, A ) . (630)

The isotropic part of 7 is not taken into account, and is integrated in the
pressure term because S and ) have zero traces. To simplify the expansions
in the following, we use the reduced notation:

0 = Sully, (S D) = 5i;0, s
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The most general form for relation (63_02 is a polynomial of infinite degree
of terdors whose terms are of the form S Q0 25*0™..., where the a; are

_positive integers. Each terms in the series is multiplied by a coefficient, which

is itself a function of the invariants of S and 2. This series can be reduced to a
finite number of linearly independent terms by the Cayley- Hamilton theorem.
Since the tensor 79 is symmetrical, we retain only the symmetrical terms here.
The computations lead to the definition of eleven tensors, my, ..., m11, with
which I4, ..., I are associated:

m) = ?, ma = 3-27
ms = b, ma = 50-Q5,
ms = §2§—Q§2, me = Id,
] —2— R} Ly S (631)
my =S +Q°S, mg = Q850 —Q°5Q,
me = S05 —5°05, m =580 +0°5,
my = Q50 -850, :
I1 = tr(§2), Iz = tI‘(Q—Q),
I = e(8%), I = @), (6.32)

I

Iy = (30, I = tx(§°°5Q),
where Id designates the identity tensor.

These tensors are independent in the sense that none can be decomposed
into a linear sum of the ten others, if the coefficients are constrained to
appear as polynomials of the six invariants defined above. If we relax this last

- constraint by considering the polynomial quotients of the invariants too, then

only six of the eleven tensors are linearly independent. The tensors defined
above are no longer linearly independent in two cases: when the tensor S
has a double eigenvalue and when two components of the vorticity disappear
when expressed in the specific reference of 5. The first case corresponds to
an axisymmetrical shear and the second to a situation where the rotation is
about a single axis aligned with one of the eigenvectors of S. Assuming that
neither of these conditions is verified, six of the terms of (6.31) are sufficient
for representing the tensor 7, and five for representing its deviator part, which
is consistent with the fact that a second-order symmetrical tensor with zero
trace has only five degrees of freedom in the third dimension. We then obtain
the generic polynomial form:

7 = O ASS + CAN (S + G A ()¢
[ S o 1l =2 =
+ CANSA-09) + C’sAzﬁ(SQQ 300 (6.33)
where the C;, i = 1,5 are constants to be determined. This type of model

is analogous in form to the non-linear statistical turbulence models (314,
315]. Numerical exper’ “ents performed by the authors on cases of isotropic
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= = = _ 105 (0w \®
(SiuSkjSj) = ?<(8_wl) )

3/2
:Jﬁa)($m) @, (637)

homogeneous turbulence have shown that this modeling, while yielding good
results, is very costly. Also, computing the different constants raises problerns
because their dependence as a function of the tensor invariants involved is
complex. Meneveau et al. [231] attempted to compute these components by
statistical techniques, but achieved no significant improvement over the hnear
model in the prediction of the subgrid tensor eigenvectors. :
We note that the first term of the expansion corresponds to subgrid viscos-
ity models for the forward energy cascade based on large scales, which makes
it possible to interpret this type of expansion as a sequence of departures
from symmetry: the isotropic part of the tensor is represented by a spherical
tensor, and the first term represents a first departure from symmetry but
prevents the inclusion of the inequality of the normal subgrid stresses3. The
anisotropy of the normal stresses is included by the following terms, which
therefore represent a new departure from symmetry.

where coefficient S(k.) is defined as:

stk = (52 >/<(‘9“1>2>3/2 . (6.39)

Substituting these expressions in relation (6.35) yields:

@ = (@2 [1 - \75?0018('““)] (—;-KO)S/Z K2e) . (6.39)

This relation provides a way of relating the constants Cs and C; and
~ thereby computing C; once C; is determined by reasoning similar to that
“ explained in the chapter on functional models. The asymptotic value of
S(ke) is evaluated by theory and experimental observation at between 0.4
and 0.8, as k. — 0o0. The constant Cz cannot be determined this way, since
the contribution of the anti-symmetrical of the velocity gradient to the energy

Kosovic’s Simplified Non-Linear Model. In order to reduce the algo-
rithmic cost of the subgrid model, Kosovic [167] proposes neglecting certain
terms in the generic model presented above. After neglecting the high-order
terms on the basis of an analysis of their orders of magnitude, the author
proposes the following model:

A K g TG 1z = transfer is null?. .
o 2 2\1/27G. = 1 -
g = ~(GAT2EISTYTS + G <SZkSk3 3Smnsm"6” ) On the basis of simple examples of anisotropic homogeneous turbulence,
+ Cy (S — QlkSk])] ; (6.34). Kosovic proposes:

where Cs is the constant of the subgrid viscosity model based on the large i
scales (see Sect. 4.3.2) and C; and C, two constants to be determined. After
computation, the local equilibrium hypothes1s is expressed:

02 ~ Cl s (640)
which completes the description of the model.

Dynamic Non-Linear Model. Kosovic’s approach uses some hypotheses
intrinsic 'to the subgrid modes, for example the existence of a theoretical
the spectrum shape and the local equilibrium hypothesis. To relax these
constraints, Wong [348] proposes computing the constants of the non-linear
# models by means of a dynamic procedure.

To do this, the author proposes a model of the form (we use the same
notation here as in the description of the dynamic model with one equation
+ for the kinetic energy, in Sect. 4.4.2):

() = —(r;54) g
(A2 [(215P) /5,585 + CiBaSksB5)) - (6.39)

In the framework of the canonical case (isotropic turbulence, infinite in- -
ertial range, sharp cutoff filter), we get (see [17]):

(SijSis) = ((g:) )

2 4 = (2 @ - ’
3 . " Tij = _qsgsdij - 201A qsgs Sij - CgNij s (641)
ZK0<6>2/31€§/3 : (6.36)

3

where Cy and Cy are constants and qus the subgrid kinetic energy, and

I

_— P .
: / the relat
3 This is true for all modeling of the form 7 = (V®YV) in which V is an arbitrar This is because we have the relation

vector. It is trivially verlﬁed that the tensor (V ® V) admits only a single non :
zero eigenvalue A = (V2 +VE+ Vi), while the subgrid tensor in the most genenﬂ . /! _ B
case has three distinct eigenvalues. i since the tensors ! and S are anti-symmetrical and symmetrical, respectively.

Q” SZJ =0 ,
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N = S8k — %gmngmn 8 + gw _ %gmm 5 (6.42) A §imultaneous evaluation of these two parameters leads to:
N ’ . Lun(AmnBpqBpg — BrnApgBpg)
here S;; is th 5 Jarivati T . SACH ~ Pgpg papre) 6.50
where Sy; is the Oldroyd® derivative of Sy;: 1 A Ay Bi;Bij — (AijBij)? (6.50)
= DS;;  Ou; o 0t; - —2 Linn(BmnApgApqg — AmnApgBpq)
Sii = - Spi— —LG, . 6.43 oy mn\Tmnipgfipg mn/ipgDpg )
s T el A el L (6.43) A°Cy i AviBrs By — (Ass By ? (6.51)

where D/Dt is the material derivative associated with the velocity fleld T.
The isotropic part of this model is based on the kinetic energy of the subgrid
modes (see Sect. 4.3.2). Usually, we introduce a test filter symbolized by a

tilde, the cutoff length of which is denoted A. Using the same model, the
subgrid tensor corresponding to the test filter is expressed:

The quantities qsgs and ngs are obtained by solving the corresponding
evolution equations, which are described in the chapter on functional models.
This completes computation of the subgrid model.

One variant that does not require the use of additional evolution equations
is derived using a model based on the gradient of the resolved scales instead
of one based on the subgrid kinetic energy, to describe the isotropic term.

2 The subgrid tensor deviator is now modeled as:

Ty = 3 sgsé 201A ngs Sm CZ_H_ij , (6.44)
1 S _— .
where ngs is the subgrid kinetic energy corresponding to the test filter, Tij — ’ngk(sz‘j = —20147|9]8i; — CalNij . (6.52)

and H i; the tensor analogous to N,;, constructed from the velocity field ﬁ.
Using the two expressions (6.41) and (6.44), the Germano identity (4.126) is
expressed:

The two parameters computed by the dynamic procedure are now A Ch

_and Al Cs. The expressions obtained are identical in form to relations (6.50)
and (6.51), where the tensor A;; is defined as:

Lij = Tij — Ty
(ngs 53;)613 + 201-A-Aij + OQZzB” , (645) 3

| Z

' e == (A
Aij = 151845 — 15154 (:) : (6.53)

in which
. 6.1.3 Homogenization Technique:
" Perrier and Pironneau Models

Aij = Sij\[ s — 55130 Whes (6.46 ,
i General Description. Another category of models derived from an ex-
~ 2 ; pansmn in a small parameter is that of the models obtained by Perrier and
B Y (g) .. (6.47) ~ Pironneau [263) by means of the homogenization theory. This approach, which
A K ~ consists in solving the evolution equations of the filtered field separately from

those of the subgrid modes, is based on the assumption that the cutoff is
* Jocated within the inertial range at each point. The resolved field T and the
. subgrid field v’ are computed on two different grids by a coupling algorithm.
" In all of the following, we adopt the hypothesis that w = 0. The subgrid
" modes u’ are then represented by a random process v°, which depends on
- the dissipation ¢, and the viscosity v, and which is transported by the resolved
: field u. This modeling is denoted symbolically:

u =V’ (e, E;S—Iit-, ;5%) , (6.54)

in which 0~ is the largest wave number in the inertial range and 5§72 the
highest frequency cons” ved. As the inertial range is assumed to extend to

We then define the residual E;;:

Eiy; = Lij — (ngs &55;)5” + 2012_Aij -+ CzZzBij . (6.48)

The two constants C; and Cy are then computed in such a way as to'
minimize the scalar residual E;; E;;, i.e.

6E¢jE¢j _ 6EijEij _ n
s = g =0 (6.49)

5 This derivative responds to the principle of objectivity, i.e. it is invariant if th
reference system in which the motion is observed is changed
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the high wave numbers, § is taken as small parameter. Let u® be the solution Vy-u' =0 (6.61)

to the problem: where 7, designates the gradient with respect to the x' variables and q the

5 O(ub + 8 (b 4 2,8 5 208 Lagrange multiplier that enforces the constraint (6.61). This model, though
Oug + (ui + 0§) (g + ) —y 0% = o o] +v 0% simpler, is still difficult to use because the variable (x — W) is difficult to
at O, OOz Oz; O Bwkaxk manipulate. So other simplifications are needed.

6.55 ;
(6:55) Second Model. To arrive at a usable model, the authors propose neglect-

ing the transport of the random variable by the filtered field in the field’s
evolution equation. This way, the random variable can be chosen in the form:

If v9 is close to o, then u® is close to @W. More precisely, we have:

b =14 oul 4 6%u? + .. (6.56) 1
. o L . . vi(x,t) = =v(x,t,x",t) (6.62)
A modeling of this kind, while satisfactory on the theoretical level, is not 4
so in practice because the function v° oscillates very quickly in space and with
time, and the number of degrees of freedom needed in the discrete system to
describe its variations remains very high. To reduce the size of the discrete = %{- , (6.63)

system significantly, other hypotheses are needed, leading to the definition of
simplified models which are described in the following. and where the time ¢’ is defined as before. Assuming that v is periodic along
x'" and ¢’ on the domain €2, and has an average of zero over this interval, the

First Model. The first simplification consists in choosing the random pro- subgrid term takes the form:

cess in the form:
T=AVu , (6.64)

- where A is a definite positive tensor such that the term AV is equal to the
‘average of the term (v ® ul) over {1, in which u! is a solution on €2, of the

vO(x,t) = %v

in the space and time scales x’ and ¢/, respectively, of the subgrid modes are

(x,t,x,¢) (6.57)

defined as: problein:
T o 1
=2 (6.58) UVl + v Yyl = Vg +v o VE (6.65)
The new variable v (x,t,x’,t') oscillates slowly and can thus be repre- Vo ul=0 | (6.66)

sented with fewer degrees of freedom Assuming that v is periodical depend; :
ing on the variables x’ and ¢’ on a domain Q, = Zx]0,T’[, and that the ;
6.2 Differential Subgrid Stress Models

tensor is expressed in the form: ’
s =BV (6.59‘ -6.2.1 De}ardorﬁ' Model

¢ Another approach for obtaining a model for the subgrid tensor consists in
~solving an evolution equation for each of its components. This approach,
proposed by Deardorff [77] and recently re-investigated by Fureby et al. [107],
. is analogous in form to two-point statistical modeling. Here, we adopt the case
~where the filter is a Reynolds operator. The subgrid tensor 7;; is thus reduced
' to the subgrid Reynolds tensor R;;. We deduce the evolution equation of the
pbgnd tensor components from that of the subgrid modes (3.29)":

where the term BV is computed by taking the average on the cell of pe;
odicity €, of the term (v - Vul +ul- Vv), where u! is the a solution on this
cell of the problem: s

629%_VV’Q"ulgl_V'VX’ul“f'lll'Vx/v:Vq—v-Vﬁ—ﬁ-Vv , (660)

6 This is equivalent to considering that v (x,t,x’,t') is statistically homogeneous

and isotropic, which is theoretically justifiable by the physical hypothesis of locaj
isotropy. :

7 This i s done by applying the filter to the relation obtained by multiplying (3.29)
“ by u and taking the half sum with the relation obtained by inverting the sub-
scnpts ¢ and j.
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OTi4 o o o, OTi; 0, o,
o = ~5ar (@eTis) = Tikéw—; - Tjka—w; , e “Tika—w; - Tjkb—:}i : (6.72)
v '
0 ——— , [ Oul % o Assuming that the subgrid modes are isotropic or quasi-isotropic, i.e. that
—%“zuyuk +p z; + oz, the extra-diagonal elements of the subgrid tensor are very small compared
p Gu O with the diagonal elements, and that the latter are almost mutually equal, the
o Uy U

right-hand side of the reduced equation (6.72) comes down to the simplified
form:

The various terms in this equation have to be modeled. The models

Deardorff proposes are: _qggsgij > (6.73)

in which qSgs = upup, / 2 is the subgrid kinetic energy. Let ¢ be the character-
istic time of the subgrid modes. Considering the relations (6.72) and (6.73),
nd assuming that the relaxation time of the subgrid modes is much shorter
than that of the resolved scales®, we get

— For the pressure—strain correlation term:

a ! \,‘ qs S 2 — CEE
<8u + Y > —Ch s (7‘7;]' —g 2 (5”> +gq52gsS,-j y (668

Ox; O A g foes

- 1 2 @ v
where C), is a constant, qggs the subgrid kinetic energy, and .5;; the strain Tijg — §Tkk5ij ~ —lodgsSij - (6.74)

rate tensor of the resolved field.

ot b The time ¢y can be evaluated by dimensional argument using the cutoff
— For the dissipation term:

length A and the subgrid kinetic energy:

A

5 8u 2, )32
ke (o) T to v —on (6.75)

= §;,C,
3a:k 83319 J

l>

where C, is a constant.

— For the triple correlations: By entering this estimate into equation (6.74), we get an expression anal-

. ogous to the one used in the functional modeling framework:

— 7] 0 0 v
O A A Tik + 5 Tij . 6.70): 1 — —_

U u 3m (096 Tk + oz, ikt 5 r z]) (6.70 Tij — ‘3‘Tkk6ij ~ A qSZgS Sy - (6.76)

The pressure-velocity correlation terms p’—u; are neglected. The values of

the constants are determined in the case of isotropic homogeneous turbulenc

6.3 Deterministic Models of the Subgrid Structures

Con = 413, Co = 0.70, Capp =02 . (6.71) 6.5.1 Gonoral

Lastly, the subgrid kinetic energy is determined using evolution equatioti

(4.108) ! Misra and Pulin {236], following on the works of Pullin and Saffman [273],

roposed subgrid models using the assumption that the subgrid modes can
be represented by stretched vortices whose orientation is governed by the
resolved scales.

Supposing that the subgrid modes can be linked to a random superimpo-
sition of fields generated by axisymmetrical vortices, the subgrid tensor can
be written in the form:

6.2.2 Link with the Subgrid Viscosity Models

We reach the functional subgrid viscosity models again starting with a mod
with transport equations for the subgrid stresses, at the cost of additional
assumptions. For example, Yoshizawa et al. [363] proposed neglecting all t]
terms of equation (6.67), except those of production. The evolution equatlon

(o /o]
thus reduced comes to: Tij = 2 E(k)dk(Epi ZpqEq;) (6.77)

ke

¢

8 We.again find here the “~al scale-separation hypothesis 4.4.
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in which E(k) is the energy spectrum, Ej,,, the rotation matrix used to switch
from the vortex coordinate system to the reference system, Z;; the diagonal
tensor whose main elements are (1/2,1/2,0) and (EpiZpqEq;), the moment
of the probability density function P(c, p3) of the Euler angles o and § giving
the orientation of the vortex axis with respect to the frame of reference. The
statistical average performed on the Euler angles of a function f is defined
as:

Tij = Qogs [A (85 — €%€3%) ++ (1 — X (655 — ee?)] (6.83)

[+
~where the Weighting coefficient is taken proportional to the norms of the
*eigenvalues:

A3

A= — 2 6.84
Az + [Ag] (6.84)

6 3.3 83/w Alignment Model

kg 27 o }

UEN == [ [ 1B)Plpsindads . (o19)
TJo Jo : The second model is derived on the assumption that the subgrid structures

are oriented along the third eigenvector of the tensor Sij, denoted e®3 as
before, and the vorticity vector of the resolved field. The unit vector it carries

'T'wo pieces of information are therefore needed to compute the subgz{
term: the shape of the energy spectrum for the subgrid modes and the subgr

structure orientation distribution function. As the use of an evolution equ is denoted e* and is computed as:
tion for the probability density function yielded no satisfactory results, Misra. ) _
and Pullin propose modeling this function as a product of Dirac functions ot W — _—V—XE (6.85)
a linear combination of such products. These are of the general form: : IV x 1
An : The subgrid tensor is evaluated as:
P(aaﬂ) = mg(a - 9)5(/8 - ¢) ’ (6'79) :
Tij = Qogs [A (815 — €5%€5%) + (1 — X (6 — eved)] . (6.86)

where 0(x,t) and $(x, t) determine the specific orientation considered. Defin

ing the two unit vectors  and 6: The weighting parameter X is chosen arbitrarily. The authors performed

tests considering the three values 0, 0.5, and 1.

— i , e = sin(a)sin(8), es = cos(a), 6.80
e1 = sin(a) cos(B), ez = sin(a)sin(B), ez = cos(a) ( ( 3.4 Kinematic Model

CStarting with the kinematics of a vortex filament entrained by a fixed velocity
field, Misra and Pullin propose a third model, for which the vector v is ob-
tained by solving an evolution equation. The equation for the ith component
of this vector is:

ey =sin(f) cos(¢), e = sin(f)sin(¢), €3 = cos(f),

the subgrid tensor can be re-written in the form:

Tig = ((Sij - 6:6;) / E(k:)dk = (5” - e}’eg) qszgs . (682

ke Oej v ou; v v v duy,

(3
=€; 7 — €, €Le; —
ot Jox; VR b

The subgrid tensor is then evaluated by inserting the vector e thus
computed into the expression (6.82).

6.87
The various models must thus specify the specific orientation directions ( )
of the subgrid structures. Three models are presented in the following. The:
subgrid kinetic energy quS can be computed in different ways (see the sec’qici)‘hs ’
on the functional models), for example by solving an additional evolution
equation, or by using a double filtering technique. T

6.4 Scale Similarity Hypotheses

6.3.2 S3/S2 Alignment Model and Models Using Them

A first hypothesis is to assume that the subgrid structures are oriented along -
the eigenvectors of the resolved strain rate tensor S,; that corresponds to -
its two largest eigenvalues. This is equivalent to assuming that they respond
instantaneously to the forcing of the large scales. Using €2 and e*3 to denote
these two vectors, and Ay and A3 > A, the associated eigenvalues, we get'

6.4.1 ‘Scale Similarity Hypotheses

- Basic Hypothesis. The scale similarity hypothesis such as proposed by
~ Bardina et al. [12,13] consists in assuming that the statistical structure of
* the tensors constructed on the basis of the subgrid scales is similar to that of
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their equivalents evaluated on the basis of the smallest resolved scales. Th
spectrum of the solution based on this hypothesis is therefore broken dow:
into three bands: the largest resolved scales, the smallest resolved scales (! 2.
the test field), and the unresolved scales (see Fig. 4.14). '
This statistical consistency can be.interpreted in two complementar;
ways. The first uses the energy cascade idea. That is, the unresolved scales.
and the smallest resolved scales have a common history due to their inter:
actions with the largest resolved scales. The classical representation of th
cascade has it that the effect of the largest resolved scales is exerted on :t}iv
smallest resolved scales, which in turn influences the subgrid scales, wh1c
are therefore indirectly forced by the largest resolved scales, but s1m11ar1
to the smallest. The second interpretation is based on the idea of coherent '
structures. These structures have a non-local frequency signature?, i.e. they;
have a contribution on the three spectral bands considered. Scale similarit
is therefore associated with the fact that certain structures appear in each of
the three bands, inducing a strong correlation of the field among the variou:
levels of decomposition.

Extended Hypothesis. This hypothesis was generalized by Liu et al. 200]‘
(see [228] for a more complete discussion) to a spectrum split into an arbitrary.
number of bands, as illustrated in Fig. 6.1. The scale similarity hypothesis
then re-formulated for two consecutive spectrum bands, with the consistent
forcing being associated with the low frequency band closest to those consid-
ered. Thus the specific elements of the tensors constructed from the velocit
field u™ and their analogous elements constructed from u™*! are assume
be the same. This hypothesis has been successfully verified in experiments in-
the case of a jet turbulence [200] and plane wake turbulence [258]. Liu et:a

have also demonstrated that scale similarity persists during rapid straining
(199). e

6.4.2 Scale Similarity Models

This section presents the structural models constructed on the basis of:t
scale similarity hypothesis. All of them make use of a frequency extrapola-
tion technique: the subgrid tensor is a approximated by an analogous tensor
computed from the highest resolved frequencies. The following are descrlbe

1. Bardina’s model (p.179) in which the subgrid tensor is computed by_
applying the analytical filter a second time and thereby evaluating’th

9 This is due to the fact that the variations of the velocity components associa (
with a vortex cannot be represented by a monochromatic wave. For example,
Lamb-Oseen vortex tangential velocity radial distribution is:

a=2-7) |

where 7 is the distance to the center and g the maximum v “ity.
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E(K)

% _ fluctuation of the resolved scales. This model is therefore inoperative
" when the filter is idempotent, because this fluctuation is then null.
. Filtered Bardina model (p. 180), which is an improvement on the previous

one. By construction, the subgrid tensor is a filtered quantity, which
results in the application of a convolution product and is therefore non-

ilocal in the sense that it incorporates all the information contained in
the support of the filter convolution kernel. It is proposed in this model

to cover this non-local character by applying the filter to the modeled

subgrid tensor.
. Liu-Meneveau-Katz model (p.181), which generahzes the Bardina model
" to the use of two consecutive filters of different shapes and cutoff frequen-

cies, for computing the small scale fluctuations. This model can therefore

i be used for any type of filter.
. The dynamic similarity model (p.182), which can be used to compute

the intensity of the modeled subgrid stresses by a dynamic procedure,
whereas in the previous cases this intensity is prescribed by hypotheses
on the form of the energy spectrum.

Bardina Model. Starting with the hypothesis, Bardina, Ferziger, and
Reynolds [13] proposed modeling the C and R terms of the Leonard de-
composition by a second application of the filter that was used to separate
the scales. We furthermore have the approximation:

=P, (6.88)

which allows us to say:™
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Rij = (w; — ;) (u; - 3;) (6.89 - Liu-Meneveau-Katz Model. The Bardina model uses a second appli-
‘cation of the same filter, and therefore a single cutoff scale. This model is

 generalized to the case of two cutoff levels as [200]:

{

Ci; = (uy - il)ﬁ] + (_Ujj -~ ﬁj)ui , (690)

or 7ij = C@T; — Tity) = GLE (6.95)

- where the tensor L7 is now defined by two different levels of filtering. The test
filter cutoff length designated by the tilde is larger than that of the first level.
.-The constant C| can be evaluated theoretically to ensure that the average
Value of the modeled generalized subgrid kinetic energy is equal to its exact
ounterpart [67]. This leads to the relation:

Rij + Cy = (Wu; — u;w;) (6.91

Adding Leonard’s term, which is computed 'directly from the resolved
scales, we get:

Tij = Lij + R;; + Cyj = (ﬂiﬂj —ﬁiﬁj) . (6‘92) _—
Ci— (Uxtr — UpTs)

 (uRTE — T (6.96)

This can be re-written in another using the generalized central moment
proposed by Germano [113]: N .
~Let F(k) and G(k) be transfer functions associated with the grid filter
7ij = 1a([uda, [ujle) = Lij . (6.93 and t‘est filter, 'respectively, and let E(k) be‘the energy spectrum of the exact
- solution. Relation (6.96) can then be re-written as:
The subgrid tensor is therefore approximated by the generalized centra] i
moment of the filtered field defined like the tensor L;; in the Germaric :
decomposition (see Sect. 3.3.2). Experience shows that this model is no
effective when the filter is a Reynolds operator, because the contribution thu
computed then cancels out. Contrary to the subgrid viscosity models, this on
does not induce an alignment of the proper axis system of the subgrid tenso
on those of the strain rate tensor. Tests performed on databases generated by
direct numerical simulation have shown that this model leads to a very good
level of correlation with the true subgrid tensor, including when the flow is
anisotropic [139]. .
Despite its very good level of correlation!?, experience shows that this
model is only slightly dissipative and that it underestimates the energy cas-
cade. It does, on the other hand, include the backward cascade mechanisi.

Filtered Bardina Model. The Bardina model (6.92) is local in space in
the sense that it appears as a product of local values. This local character-~
is in contradiction with the non-local nature of the subgrid tensor, so that "
each component appears in the form of a convolution product. To remedy’
this problem, Horiuti [142] proposes the filtered Bardina model:

o fom(l:ﬁQ(li))E(k)dk
(= GR(k) F2(k) E(k)dk

(6.97)

Evaluations made using experimental data come to C; ~ 1 [200,258]!.
Shah and Ferziger [307] propose extending this model to the case of non-
symmetric filters.

To control the amplitude of the backward cascade induced by the model,
especially near solid walls, Liu et al. [200] propose the modified form:

iy = Cif(ILs) L (6.98)
where the dimensionless invariant Irg, defined as ‘
L2 S,
VERLEA S Sk

measures the alignment of the proper axes of the tensors £™ and S. As the
kinetic energy dissipated by the subgrid model is expressed

Iis = (6.99)

Tij = (ﬁ;ﬂ_]h izﬁ]) = z:-ij . (694) £ = _Tij-S—ij , (6100)
With this additional filtering operation, we recover the non-local charact we get, using model (6.98):
of the subgrid tensor. ‘3 ’
€ = _“le([LS)ILS . (6.101)

e

1! The initial value of 0.45 & 0.15 given in [200] does not take the backward cascade

10 The correlation coefficient at the scalar level is generally higher than 0.8. into account.




182 6. Structural Modeling 6.5 Mixed Modeling 183

The backward energy cascade is modulated by controlling the sign and;
amplitude of the product f(Ipg)lrs. The authors considered a number of
choices. The first is: :

6.4.3 A Bridge Between Scale Similarity and Approximate
Deconvolution Models. Generalized Similarity Models

The Bardina model can be interpreted as a particular case of the approximate
.deconvolution basedvmodels described in Sect. 6.1.
Using the second order differential approximation

1 if s >0

0 otherwise (6.102)

flis) = {

This solution makes it possible to cancel out the representation of t
backward cascade completely by forcing the model to be strictly dissipative:
One drawback to this is that the function f is discontinuous, which can
generate numerical problems. A second golution that is continuous consists
in taking:

— a? 52¢
¢=o+ 5 92 (6.109)

the Bardina model (6.92) is strictly equivalent to the second order gradient
model given by relations (6.13) and (6.14).

It can also be derived using the iterative deconvolution procedure: a
geroth-order truncation in (6.27) is used to recover relation (6.88), while
fa first-order expansion is employed to derive (6.89).

The Bardina model then appears as a low-order formal expansion model
for the subgrid tensor. Generalized scale similarity models can then be de-
fined using higher-order truncations for the formal expansion [119]. They are
formulated as

f(ILs) = {ILS if o hs20 (6.103)

0 otherwise

One last positive, continuous, upper-bounded solution is of the form:

_ [ (1 —exp(—Ifs)) if Iis >0
F(us) = { 0 otherwise (6.104)

in which v = 10. iy = (G * W) (G xTy) — (Gt ), — (Gt *m); (6.110)
Dynamic Similarity Model. A dynamic version of the Liu-Menevea
Katz model (6.95) was also proposed [200] for which the constant C) will
longer be set arbitrarily. To compute this model, we introduce a third lev
of filtering identified by 7. The Q analogous to tensor £™ for this new level

of filtering is expressed:

- iwhere G;l* designates the approximate deconvolution operator, defined us-
ing equation (6.9) or equation (6.27).

6.5 Mixed Modeling

Qg = (W —wity) (6.105 +6:5.1 Motivations
The Germano-Lilly dynamic procedure, based here on the difference: - o )

: : The structural models based on the scale similarity idea, and the functional
mmodels, each have their advantages and disadvantages that make the seem

Mij = f(las)@i; = f(ILS)L?; ’ (6.106) ‘.complementary:

where 'The functional models, generally, correctly take into account the level of
—g- : “the energy transfers between the resolved scales and the subgrid modes.
Igs = QrnImn , (6.10 However, their prediction of the subgrid tensor structure, i.e. its eigenvec-

Q] 1S} tors, is very poor.
e 'The models based on the scale-similarity hypothesis or an approximate
yields: . deconvolution procedure generally predict well the structure of the subgrid
£ My, ensor better {and then are able to capture anisotropic effects and dise-
G = m (6.108) .. quilibrium), but are less efficient for dealing with the level of the energy

" transfers.
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Tests have shown that they are able to capture disequilibrium and anis6
ropy effects. 5
Shao et al. [308] propose a splitting of the kinetic energy transfer across
the cut-off that enlights the role of each one of these two model classes. These
authors combine the classical large-eddy simulation convolution filter to the
ensemble average, yielding the following decompositions: E
u=(u)+u®
u+u
(@ + () + v +u”

(6.111)
(6.112)

Using this hybrid decomposition, the subgrid tensor splits into

apid
TP

S slow
Tij =Ty +Tg )

with

slow
Tij

wFuf —weue;
apid _ TN e\ e —_— —=

T = (e (ug) — @) () + ul(uy) — ()
) — W)

These two parts can be analysed as follows:

— The rapid part explicitly depends on the mean flow. This contributio
arises only if the convolution filter is applied in directions where the m

flow gradients are non-zero. It is referred to as rapid because the time scale.
of its response to variations of the mean flow is small. Numerical exp”
ments show that this part plays an important role when the turbulence is i
a desiquilibrium state when: (i) production of kinetic energy is much larger
than dissipation or (ii) the filter length is of the same order as the integral
scale of turbulence. Subgrid stresses anisotropy is observed to be due tothe.
interaction of this rapid part and the mean shear. Numerical simulations’
have shown that the rapid part escapes the functional modeling, but scale-
similarity models succeed in representing anisotropic energy transfer (both -
forward and backward cascades) associated to the rapid part. E
The slow part is always present in large-eddy simulation, because it dbes‘
not depend on the mean flow gradients. It corresponds to the subgrid tensor
analyzed through the previously described canonical analysis. It is referred -
to as slow because its relaxation time is long with respect to rapid part.
Numerical tests show that subgrid viscosity model correctly capture the
associated kinetic energy transfer. :
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- One simple idea for generating subgrid models possessing good qualities

on both the structural and energy levels is to combine a functional with
a structural model; making what is called mixed models. This is generally
done by combining a subgrid viscosity model for representing the energy
cascade mechanism with a scale similarity. The stochastic backward cascade
models are usually not included because the structural models are capable of
including this phenomenon. The resulting form is

1 — 1
Tij — ngk‘sij = —20sgs Sy + (Lij — §ka5ij) , (6.117)

“where Vsgs Is the subgrid viscosity (evaluated using one of the previously
 described model), and L;; the evaluation obtained using one of the structural
model'2.

Examples of such models are described in the following.

6.5.2 Examples of Mixed Models
We present several examples of mixed models here:

1. The Smagorinsky-Bardina model (p. 185), for which the respective weights

of each of the contributions are preset. This model is limited by the
hypotheses underlying each of the two parts constituting it: the subgrid

_viscosity is still based on arguments of the infinite inertial range type.

“Experience shows, though, that combining the two models reduces the
importance of the constraints associated with these underlying hypothe-
ses, which improves the results.

. A one-parameter mixed model whose subgrid viscosity is computed by
a dynamic procedure of the Germano-Lilly type (p.186). With this pro-
cedure, the respective weights of the structural and functional parts of
the model can be modified, so that the subgrid viscosity model is now
computed as a complement to the scale similarity model, which allows
a better control of the dissipation induced. It can be said, though, that
this procedure innately prefers the structural part.

. The general form of N-parameter dynamic mixed model, as derived by
Sagaut et al. (p.187). This procedure is an extension of the previous one:
the weights of the different parts of the model are dynamically computed,
resulting in a possibly better approximation of the true subgrid stresses.
The case of two-parameter dynamic mixed model is emphasized.

Mixed Smagorinsky—Bardina Model. The first example is proposed by
Bardina et al. [13] in the form of a linear combination of the Smagorinsky
model (4.90) and the scale similarity model (6.92). The subgrid tensor devi-
- ator is then written:

.;_12 Only scale-similarity models or approximate deconvolution models are used in

practice to derive mixed models, because they are very easy to implement.
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1 1 — 1
57'1@1@57;_7- =3 (——QVSgsSij + L — ‘S‘Ekkfsij) s (6.118

Tij — and where Py, represents the trace of the subgrid tensor. The Germano-Lilly

dynamic procedure leads to:

in which ¥ , (L0 — Hii)my;
o : . Cq=—H MY (6.129)
,Cij = ("J% Uy — U Uj) s (6.119) : Mg M
and N In simulations performed with this model, the authors observed a reduc-

tion in the value of the dynamic constant with respect to that predicted by
- the usual dynamic model (i.e. based on the Smagorinsky model alone). This
“can be explained by the fact that the difference between the L™ and ‘H terms
‘ appears in the numerator of the fraction (6.129) and that this difference
" is small because these terms are very similar. This shows that the subgrid
wviscosity model serves only to model a residual part of the full subgrid tensor
and not its entirety, as in the usual dynamic model.

Vreman et al. [341] propose a variant of this model. For the sake of
mathematical consistency, by making the model for the tensor T;; dependent
only on the velocity field that corresponds to the same level of filtering, i.e.
ﬁ', these authors propose the following alternate form for the tensor Q;;:

ngs—Cs ISI . " (6.120

Variants are obtained either by changing the subgrid viscosity model uset
or by replacing the tensor £ with the tensor £™ (6.98) or the tensor £ (6.94). -

One-Parameter Mixed Dynamic Model. A mixed dynamic modeling
was proposed by Zang, Street, and Koseff [366]. This is based initially on
the Bardina model coupled with the Smagorinsky model, but the latter:
can be replaced by any other subgrid viscosity model. The subgrid viscosity
model constant is computed by a dynathic procedure. The subgrid tensors
corresponding to the two filtering levels are modeled by a mixed model:

Tij = 3 ThkOig = —2WsgsSij + L5 — E Wi (6.121) . Qij = Uilly — Uil - (6.130)
1 ~ 1 . IN-Parameter Dynamic Mixed Model
T = —?;Tkkéij = ~2WegeSiy + Qi — Z),'Q’“"‘Sij ’ (6.122 ‘General Formulation and Formal Resolution. A general form of multiparam-

eter dynamic model was derived by Sagaut et al. [288]. Considering a formal

in which :
N-part parametrization of the subgrid tensor, each term being associated to
Qi = ﬂ’zvﬂ] _ %Z%J ’ (6.123 ‘a real constant Cj,k=1,.,N
and =Y af@a)  (6.131)
I=1,N '

Vogs = CadllS] - (6.124 ‘where the functions fl] are the kernels of the different parts of the complete

The residual E;; is now of the form: model. The equivalent formulation obtained at the test filter level is

E;j = [,?; —Hij — (—QCdZZmij + 5@‘ij1¢> , (612% ij = Z leilj (ﬁ, A) . (6.132)
1=1,N
in which
Inserting (6.131) and (6.132) into the Germano identity (4.126), we get
) Wi; =i, — w5y (6.126) the following definition of the residual FEj;:
S Eij=Li— Yy Cmi;, mi;= [, 2) - fLw3d) . (6.133)
L = wu; —ui; (6.127) | I=1,N

In order to obtain N linearly independent relations to compute the con-
A L. — " stants C}, a first solution is to operate the contraction of the residual (6.133)
mi; = (:) 1SS — 1SSy (6.128) with N independent tensors Aéj. The constants will then appear as the

4 ‘solutions of the follow " linear algebraic problem of rank N:



188 6. Structural Modeling

i4ji 3

=1,N

It is worth noting that the N constants are éoupled, resulting in a global

self-adaption of each constant. The particular case of the least-square mini-.

k=mk k=1 N.

mization is recovered by taking Af; =mg,

In the case where some constants are not computed dynamically but are
arbitrarily set, the linear system (6.134) corresponds to a ill-posed problerh
containing more constraints than degrees of freedom. Assuming that the N’
first constants are arbitrarily chosen, we recover a well-posed problem of rank
N — N’ by replacing L;; with L;, where ;

Lij=Lij— Y Cml; . (6.135)
I=1,N" :

Two-Parameter Dynamic Models. Mixed models have also been proposed by

Salvetti [296,297] and Horiuti [143] with two dynamic constants (one for

the subgrid-viscosity part and one for the scale-similarity), corresponding to -
the N = 2 case in the previous section. These models have the advantage of
avoiding any a priori preference for the contribution of one or the other model -

component. An extensive study of dynamic mixed model has been carried ou
by Sarghini et al. [295] for the plane channel case.

Numerical simulations show that two-paramater mixed models may yield

disappointing results, because of a too low dissipation level. This is due to th
fact that the coupled dynamic procedure described in the previous sectior
gives a heavy weigth to the scale-similarity part of the model, because it
correlation coefficient with the exact subgrid tensor is much higher than
- the one of the subgrid-viscosity model. To relieve this problem, Morinishi
[248] proposes to uncouple the computation of the dynamic constants. The
modified algorithm for the dynamic procedure is:

1. Compute the constant associated to the subgrid-viscosity part of the

model using a classical dynamic procedure, without taking the séalie»‘
similarity part into account. This corresponds to the N = 1 case in:
the previous section. The resulting constant will ensure a correct level gf

dissipation.

2. Compute the constant associated to the scale-similarity part using a two-~
parameter dynamic procedure, but considering that the constant of the &
subgrid-viscosity part is fixed. This corresponds to N = 2 and N’ = 1 {4

the previous section.

6.6 Explicit Evaluation of Subgrid Scales

The models described in the present section are all based on an explicit
evaluation of the subgrid scales u' = (Id — G) * u. Because the subgrid -

> omlAk =LAk, k=1N . (6.134)
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tnodes correspond to scales of motion that can not be represented at the

considered filtering level (i.e. in practice on the computational grid), a new
thigher-resolution filtering level is introduced. Numerically, this is done by
introducing an auxiliary computational grid (or a set of embedded auxiliary
grids), whose mesh size is smaller than the original one. The subgrid field v/

_is evaluated on that grid using one of the model presented below, and then

the non-linear Gx((W+w')® (@+u')) is computed. The corresponding general
algorithmic frame is :

1. U is known from a previous calculation, on the computational grid, i.e.
at the G filtering level, whose characteristic length is A.
.. 2. Define an auxiliary grid, associated to a new filtering level F' with char-
acteristic length A < A.
: 3. Compute the approximate subgrid field v}, = (F — G) % u using a model
. on the auxiliary grid.
4. Compute the approximate non-filtered non-linear term at the F' level on
the auxiliary grid: :
(@+u,) ® (T+u))
5. Compute the approximate filtered non-linear term at the G level on the
computational grid:
G ((@+u,) ® (W +u)

-and use it to compute the evolution of 4.

© Several ways to compute the subgrid motion on the auxiliary grid have
been proposed by different authors. They are classified by increasing order of
complexity (computational cost):

~ 1. Fractal Interpolation Procedure of the fluctuations, as proposed by Scotti
“ and Meneveau (p. 190). The subgrid fluctuations are reconstructed in a
- deterministic way on the fine grid using an iterative fractal interpolation
technique (several similar fractal reconstruction techniques can be found

in [157]). This model is based on geometrical considerations only, and
does not take into account any information dealing with the flow dynam-

(. ics such as disequilibyium, anisotropy, ... But it provides an estimate of
the subgrid motion at a very low cost.

2. Chaotic Map Model of McDonough et al. (p. 191). The subgrid Suctua-
tions are approximated in a deterministic way using a very simple chaotic
dynamical system, which is chosen in order to mimic some properties of
the real turbulent fluctuations (amplitude, autocorrelation, distribution
of velocity fluctuations, ...). This model is the easiest to implement, and
induces a very small overhead. A problem is that it requires the defi-
nition of a realistic dynamical system, and then a complete knowledge

¢+ of the turbulent motion characteristics at each point of the numerical
simulation.
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3. Subgrid Scale Estimation Procedure proposed by Domaradzki and his
coworkers (p. 194). The subgrid fluctuation are now deduced from:a
simplified advection equation, deduced from the filtered Navier—Stokes
operator. An evaluation of the subgrid motion production term is derived,
and integrated over a time interval associated to characteristic relaxation
time of the subgrid scale. This model makes it possible to evaluate the =
subgrid motion at a very low computational cost, but requires the corn- :
putation of an approximate inverse filter. :

4. Multilevel Simulations (p. 196), which are based on the use of the exact *
Navier-Stokes equations on a set of embedded computational grids. The
reduction of the computational effort with respect to the Direct Numer-
ical Simulation is obtained by freezing (quasi-static approximation) the
high-frequencies represented on fine grids for some time interval, leadlng
to the definition of a cyclic strategy. These methods can be interpreted
as a time-consistent extension of the classical multigrid procedures for
steady computations. They correspond to the maximal computational
effort, but also to the most realistic approach.

The fluctuation is defined as

= lim W"[a@]=WoWo..oW[u . (6.139)

T MN—00

~
n times

The stretching parameters are such that the Hausdorff dimension D of
the synthetic signal is equal to

(6.140)

log(Jd; 1]+ldi2l) -
D= 1+ os(l 10;‘(2)| 20) if 1<|dia]+]di2] <2
1 if |dia|+]dip <1

_In order to conserve then mean value of the signal over the considered
interval, we have d; 1 = —d; 2 = d. For three-dimensional isotropic turbulence,
we have D = 5/3, yielding d = F72/3.

This procedure theoretically require an infinite number of iterations to
build the fluctuating field. In practice, a finite number of iterations is used.
The statistical convergence rate of process being exponential, it still remains
a good approximation. A limited number of iterations can also be seen as a
iway to account for viscous effects.

The extension to the multidimensional case is straightforward, each di-
rection of space being treated sequentially.

This procedure also makes it possible to compute analytically the sub-
grid tensor. The resulting model will not be presented here (see [303] for a
complete description).

6.6.1 Fractal Interpolation Procedure

Scotti and Meneveau [302,303] propose to reconstruct the subgrid Ve10c1ty
field using two informations: (i) the resolved velocity field, which is known oﬁ
the coarsest grid, and (ii) the fractality of the velocity field. The fluctuatiotis
are evaluated by interpolating the resolved coarse-grid velocity field on thé
fine grid using a fractal interpolation technique.

We first describe this interpolation technique in the monodimensional
" case. It is based on an iterative mapping procedure. The fluctuating field
u), is reconstructed within each interval of the coarse grid by introducing 4
local coordinate ¢ € [0,1]. Let us consider the interval [z;_1,%;11], Where
i—1 and i + 1 are related to the grid index on the coarse grid. We have &
(x —2;_1)/24. The proposed map kernel W for a function ¢ to interpolated
on the considered interval is:

, di16(2€) + gin (26) if € €[0,1/2]
wiale = { di,;bg%g +Zi,3§25 if ge][1/2, 1 (6.136)

where g; ; are polynomials and d; ; are stretching parameters. The authors
propose to use the following linear polynomials:

6.6.2 Chaotic Map Model

McDonough and his coworkers [148,211,251] propose an estimation proce-
dure based on the definition of a choatic dynamical system. The resulting
model generates a contravariant subgrid-scale velocity field, represented at
discrete time intervals on the computational grid:

"= ALOV (6.141)

where A is an amplitude coefficient evaluated from canonical analysis, ¢ an
anisotropy correction vector consisting mainly of first-order structure func-
tion of high-pass filtered resolved scales, and V is a vector of chaotic algebraic
maps: It is important noting that the two vectors are multiplied using a vector
Hadamard product, defined for two vectors and a unit vector i according to:
%,1(8) = (¢(xi) — p(mi-1) — di 1 ($(wiv1) — d@i-1))E
+o(zi1)(1—din
32(8) = (P(@it1) — d(z:) — dip(B(@it1) — B(i-1))§ ,
—¢(@i-1)di2 . (6.138)

(COV)-i= (¢ )V . (6.142)

The amplitude factor is chosen such that the kinetic energy of the syn-
thetic subgrid motion is equal to the energy contained in all the scales not
resolved by the simu' "on. It is given by the expression:

(6.137)
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. 1/6
Au = CyuRelS (6.143) | N= (JlV ) _7
with
and ¢ = 1.67 is the standard deviation for the variable, and the weights q,

~—9 .
A are given by
u, = (V|Vu|)/?, Rez = A4 [Vul ,
v V3 (! w-p\?
where v is the molecular viscosity. The scalar coefficient Cy, is evaluated from ar=v3 (I" (1-p) ) 5 p=07 . (6.149)

classical inertial range arguments. The suggested value is C;, = 0.62.

The anisotropy vector ¢ is computed making the assumption that the flow:
anisotropy is smoothly varying in wave-number. In a way similar to the oné "
proposed by Horiuti (see Sect. 5.3.2), the first step consists in evaluating th
anisotropy vector from the highest resolved frequency. In order to account’
for the anisotropy of the filter, the resolved contravariant velocity field u, i
considered. The resulting expression for ¢ is: ‘

The maps M, are all independent instances of one of the three following
normalized maps:

— The tent map:

R(~2-3m™) if m™ < —-1/3
m™+ ) = ¢ R(3m(n) if —1/3<mM™<1/3 | (6.150)
/5 ; R(-2-3m™) if m(™ > 1/3
¢=V3— | (6.144
[J=1 5| ‘ where m(™ is the nth instance of the discrete dynamical system, and R €
[-1,1].

where J~! is the inverse of the coordinate transformation matrix associated o
: — The logistic map:

to the computational grid (and to the filter). The vector s is defined according

to
mr+) = RApm™(1 — Im™|A,,) (6.151)

1 3
Ap=24+2V2, A,= (1+71;)\/;

. Viu /-i)l .
i= \/3—,|_C__ with
S-1 'vﬁ;/| <

3

where the U, is related to the test field computed thanks to the use of the

test filter of characteristic length A > A.
' We now describe the estimation procedure for the stochastic vector
In order to recover the desired cross-correlation between the subgrid velocity
component, the vector V is defined as:

— The sawtooth map:

R2%3m™) if m < —1/3
m™t) = { R(3m™) if —1/3<m™<1/3 . (6.152)

V=AM R(=2+3m™) if m(™ >1/3

The map parameter R is related to some physical flow parameter, since
" the bifurcation and autocorrelation behaviors of the map are governed by
" 'R. An ad hoc choice for R will make it possible to model some of the local
history effects in a turbulent flow in a way that is quantitatively and quali-
. tatively correct. It is chosen here to set the bifurcation parameter R on the
basis of local flow values, rather than on global values such as the Reynolds
number. That choice allows us to account for large-scale intermittency effects.
Selecting the ratio of the Taylor A and Kolmogorov 7 scales, a possible choice
is:

where A is a tensor such that R = A- AT, where R is the correlation tensor
of the subgrid scale velocity. In practice, McDonough proposes to use the
evaluation: 5

(V)
A0 =

(6.147)
Each component M;,i = 1,2,3 of the vector M is of the form:

Mi=o ) a Y M, , (6148
I=0,N  m=1,N, ~ tan VIR anh=l
R=t h{[————()\/n)c] tanh (Rc)} , (6.153)

where N is the binomial coefficient
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Table 6.2. Paramefers of the Chaotic Map Model. value of the defiltered velocity field on the auxiliary grid. In the second (non-

Map R, A T linear dynamic) step, scales smaller than the filter length associated to the
primary grid are generated, resulting in an approximation of the full solution.
Logistic ~ —(2+2v2)}/2 26 5 " Let @ be the filtered field obtained on the primary computational grid,
Tent 1/3 28.6 5 and u® the defiltered field on the secondary grid. That secondary grid is
chosen such that the associated mesh size is twice as fine as the mesh size
Sawtooth -1/3 28.6 5 of the primary grid. We introduce the discrete filtering operator Gg, defined

such that

= Gqu® =1 . (6.157)
where 7 is a scaling exponent empirically assumed to lie in the range [4, 6];
and (A/n). is a critical value of the microscale ratio that is mapped onto Re;
the critical value of R. Suggested values are given in Table 6.2.
The last point is related to the time scale of the subgrid scales. Let t.
be the characteristic relaxation time of the subgrid scales, to be evaluated
using inertial range considerations. If this time scale is smaller than the time
step At of the simulation (the characteristic filter time), then the stochastic
variables M/ must be updated n, times per time step, with

At Ath'ﬁ|> ~1/3
Ny & — = | —— | Re— )
te < fM A

where fis is a fundamental frequency associated with the chaotic maps used
to generate the variables. It is defined as:

It is important to note that in this two-grid implementation, the right
hand side of equation (6.157) must first be interpolated on the auxiliary grid
to recover a well-posed linear. algebra problem. To avoid this interpolation
step, Domaradzki proposes to solve directly the filtered Navier—Stokes equa-
tions on the finest grid, and to define formally the G filtering level by taking
A = 2A. The defiltered field u® is obtained by solving the inverse problem

=(Gy)'u . (6.158)

(6.154) This is done in practice by solving the corresponding linear system. In
; practice, the authors use an three-point discrete approximation of the box
filter for Gq (see Sect. 10.2 for a description of discrete test filters). This
stép corresponds to an implicit deconvolution procedure (the previous ones
were explicit procedures, based on the construction of the inverse operator
Far = _C_ ’ (6.155) via Taylor expansions or iterative procedures), and can be interpreted as an
interpolation step of the filtered field on the auxiliary grid.
The u), subgrid velocity field is then evaluated using an approximation of
its associated non-linear production term:

where C' is some positive constant and 0 ‘the integral iteration scale

1 <m(n)m(n+l)> .
§=5p(0)+ > e, p) = Ty (6.156) ' =6§,N (6.159)

I=1,00
where 8, and N’ are a characteristic time scale and N’ the production rate.
These terms are evaluated as follows. The full convection term on the auxil-
iary grid is

which completes the description of the model. This model is Galilean- a
coordinate-invariant, and automatically generates realizable Reynolds stress
It reproduces the desired root-mean-square amplitude of subgrid fluctuation:

along with the probability density function for this amplitude. Finally, fshe ou®
proper temporal auto-correlation function can be enforced. —uj aw" ,j=1,2,3 . (6.160)
j

This term accounts for the production of all the frequencies resolved on
the auxiliary grid. Since we are interested in the production of the small
scales only, we must remove the advection by the large scales, and restrict
the résulting term tho the desired frequency range. The resulting term N/ is

6.6.3 Subgrid Scale Estimation Procedure

A two-step subgrid scale estimation procedure in the physical space' is pr
posed by Domaradzki and his coworkers [83,201]. In the first (kinematic) step;
an approximate inversion of the filtering operator is performed, providing the

N{;(Id—G)*( (g —uj)g%) . (6.161)

13 A corresponding procedure in the spectral space is described Ref. [85].
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In practice, the convolution filter G is replaced by the discrete operator
Ga. The production time 6, is evaluated making the assumption that the
subgrid kinetic energy is equal to the kinetic energy contained in the smallest
resolved scales:

or equivalently

0
—gt— + NS@) = NS@1) = 77 — 7+
There are three possibilities to reduce the complexity of the simulation

With respect to Direct Numerical Simulation:

, ne[,N-1 . (6.169)

P
o2 = 02N = o?|u® — 12 Ha:azlu u]
a a IN,] 3

where o is a proportionality constant, nearly equal to 0.5 for the box ﬁlter :
This completes the description of the model.

(6.162)

— The use of a cycling strategy between the different grld levels. Freezing the
* high-frequency details over some times while integrating the equations for
the low-frequency part of the solution results in a reduction of the simu-
lation complexity. This is referred to as the quasi-static approximation for
" the high frequencies. The main problem associated to the cycling strategy
" is the determination of the time over which the high frequencies can be
frozen without destroying the quality of the solution. Some examples of
such cycling strategy can be found in the Multimesh method of Voke [336],
the Non-Linear Galerkin Method [41, 78,100~102, 262, 325], the Incremen-
. tal Unknowns technique [34, 55, 89, 90], Tmperman s MTS algorithm [329],
.+ Liu’s multigrid method [{197,198] and the Multllevel algorithm proposed
. by Terracol et al. [290,327).
= The use of simplified evolution equations for the details instead of (6.168).
A linear model equation is often used, which can be solved more easily
than the full non-linear mathematical model. Some examples among others
are the Non-Linear Galerkin method, the Variational Multiscale approach
proposed by Hughes and his co-workers [145-147]. Another possibility is
to assume that the nth level details are periodic within the filtering cell
associated to the (n — 1)th filtering level. BEach cell can then be treated
i separately from the others. An example is the Local Galerkin method of
Mc Donough [208-210]. It is interesting to note that this last assump-
tion is shared by the Homogenization approach developped by Perrier and
Pironneau (see Sect. 6.1.3).
+ The use of a limited number of filtering levels. In this case, even at the
finest description level, subgrid scales exist and have to be parametrized.
The gain is effective because it is assumed that simple subgrid models can
be used at the finest filtering level, the associated subgrid motion motion
being closer to isotropy and containing much less energy than at the coarser
filtering levels. An example among others are the Multilevel algorithm of
/: Terracol [290, 327] and the Modified Estimation Procedure of Domarradzki
.1 [87].

6.6.4 Multilevel Simulations

This class of simulation relies on the resolution of an evolution equation

for uj, on the auxiliary grid. These simulationis can be analyzed within the

framework of the multiresolution representation of the data [5,132-134], or :

similar theories such as the Additive Turbulent Decomposition [148, 213]. -
Let us consider N filters G, ..., Gy, with associated cutoff lenghtes Al
. < Ay. We define the two followmg set of velocity fields:

ﬁ":G’n*...*Gl*:uzg{L*u , (6.163)

Vi =T T = (GF — P ) su= Fpxu (6.164)

The fields @™ and v™ are respectively the resolved field at the nth level’
of filtering and the nth level details. We have the decomposition

W= Y v (6.165)

=1,k

yielding the following multiresolution representation of the data:

u={u, vl

)

The multilevel simulations are based on the use of embedded compu'ifaf- :
tional grids or hierarchical polynomial basis to solve the evolution equatlons
associated to each filtering level/details level. The evolution equations are
expressed ‘

8

v 1}, withw' =u-a . (6.166

"Some strategies combining these three possibilities can of course be de-
ned. The efficiency of the method can be further improved by using a local
grld refinement [25,164,322]. Non-overlapping multidomain techniques can
also be used to get a local enrichment of the solution [274,290].

S FNS@) = = (g7 NS(w), ne[LN] (6:167j}

where N & is the symbolic Navier-Stokes operator and [.,.] the commuﬁgﬁ‘or
operator. The equation for the details are ;

ov™

B TNSE) =T = [Fan NS, nelLN-1 , (6168)
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6.7 Implicit Structural Models

The last class of structural subgrid models discussed in this chapter is the
implicit structural model family. These models are structural ones, i.e. they
do not rely on any foreknowledge about the nature of the interactions between
the resolved scales and the subgrid scales. They can be classified as implicit,
because they can be interpreted as improvements of basic numerical methods
for solving the filtered Navier—Stokes equations, leading to the definition of
higher-order accurate numerical fluxes. We note that, because the modifica~
tion of the numerical method can be isolated as a new source term in the
momentum equation, these models could also be classified as exotic formal
expansion models. A major specificity of these models is that they all aim at
reproducing directly the subgrid force appearing in the momentum equation,
and not the subgrid tensor 7.
The three models presented in the following are:

1. The Local Average Method of Denaro (p.199), which consists in a par-
ticular reconstruction of the discretized non-linear fluxes associated to
the convection term. This approach incorporates a strategy to filter the
subgrid-scale by means of an integration over a control volume and to re-
cover the contribution of the subgrid scales with an integral formulation.
It can be interpreted as a high-order space-time reconstruction procedure
for the convective numerical fluxes based on a defiltering process.

2. The Approximate Deconvolution Procedure proposed by Stolz and Adams
(p.201). The exact non-filtered field is here approximated by truncated
series expansion of the inverse filter operator, as previously done in Sect.
6.1. The main difference with respect to the usual defiltering aproach is
that the full subgrid term, defined as the commutation error between the
filter operator and the Navier-Stokes operator (see Sect. 3.3.1), is now
approximated, rather than the subgrid tensor. This procedure is thus the
most general form of a subgrid model relying on the defiltering approach,
and can be interpreted as the definition of a specific numerical method
for the computation of the defiltered velocity field.

3. The Scale Residual Model of Maurer and Fey (p.202). As for the Ap-
proximate Deconvolution Procedure, the purpose is to evaluate the com-
mutation error which defines the subgrid term. This evaluation is carried
out using the residual between the time evolution of the solutions of the
Navier-Stokes equations on two different grids (z.e. at two different filter-
ing levels) and assuming some self-similarity properties of this residual.
This model can be considered as: (i) a generalization of the previous one,
which does not involve the deconvolution process anymore, but requires
the use of the second computational grid and (ii) a generalization of the
scale-similarity models, the use of a test filter for defining the test field
being replaced by the explicit computation (by solving the Navier—Stokes
equations) of the field at the test filter level. '
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Other implicit approaches for large-eddy simulation exist, which make
it possible to obtain reliable results without subgrid scale model (in the
common sense given to that term), and without explicit addition of numerical
diffusion’*. An example is the Spectro-Consistent Discretization proposed
by Verstappen and Veldman [333,334]. Because these approaches rely on
numerical considerations only, they escape the modeling concept and will
not be presented here.

6.7.1 Local Avefage Method

An other approach to the traditional large-eddy simulation technique was
proposed by Denaro and his co-workers in a serie of papers [75,79]. It is based
on a space-time high-order accurate reconstruction of the convective fluxes,
which account for the subgrid-scale contribution. As a consequence, it can be
seen as a particular numerical scheme based on a differential approximation
of the filtering process. For sake of simplicity, we will present the method in
the case of a dummy variable ¢ advected by a velocity field u, whose evolution
equation is (only convective terms are retained):

d¢
ot
The local average of ¢ in a filtering cell § is defined as the mean value of
¢ in this cell*®:

=V (uh) = Alw,6) - (6:70)

b(x,t) = %/- /ﬂ (€, t)dE = (t), Vz e (6.171)

where V is the measure of 2. We now consider an arbitrary filtering cell.
Applying this operator to equation (6.170), and integrating the resulting
evolution equation over the time interval [t,t + At], we get:

. _ t+ At
(p(t + At) = ¢(1))V = /t /an n-ugp(¢,t)dedt’ (6.172)

where 09 is the boundary of §2, and n the vector normal to it. The right
hand side of this equation, which appears as the application of a time-box
filter to the boundary fluxes, can be approximated by means of a differential
operator, exactly in the same way as for the space-box filter (see Sect. 6.1.1),
yielding:

14 Dissipative numerical methods should be classified as Implicit Functional Mod-
eling.

15 This filtering operator corresponds to a modification of the box filter defined in
Sect. 2.1.5: the original box filter is defined as a IR — IR operator, while the local
average is a IR — IN operator. It is worth noting that the local average operator
is a projector.
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b+ At -1 gl 6.7.2 Approximate Deconvolution Procedure
/ /n ug(é, t')dgdt! ~ At/n ufra+ Ai, gtl (€, t)d

I=1,00 This approach, as proposed by Stolz and Adams [319,320], is based on an
approximate evaluation of the full subgrid force term in the momentum equa-
tion, thanks to the use of an approximate inverse of the filter. We recall that,

writing symbolically the Navier-Stokes equations as

%% +NSw) =0 , (6.179)

(6. 173) :

The time expansion is then writen as a space differential operator usmg
the balance equation (6.170):

i

A1 9t A1 e
Id+ Z l! atl (E,t): Id -+ Z TAl l(u’.) ¢(E,t) ,

S we get the following for the filtered field evelution equation (see Chap. 3)

ou

ot
where G is the filter kernel, and [+, -] is the commutator operator. The exact
subgrid term, which corresponds to the right hand side of relation (6.180), ap-
pears as a function of the exact non-filtered field u. This field being unknown

during the computation,-the idea is here to approximate it by a deconvolution
procedure:

(6.174) ‘
with o +NS(W) = ~[VS,GH(u) (6.180)

A(u,¢) = Afu,)o A(u,‘~) o..0A(u,¢)

! times

The second step of this method consists in the reconstruction step. At
each point z located inside the filtering cell £, we have ¥

uru =G xu=G % Gru (6.181)

P(x,t) = (1) +¢'(x,t) (6.175
P(x,t+ At) = @t + At) + ¢ (x,t + At) where G; ! is the Ith order approximate inverse of the filter G
= 6(t) + (Bt + At) — §(1)) + ¢/ (z,t + At)

G+ G =1Id+0(A)

The subgrid term is then approximated as

+(¢/(X> t+ At) — ¢I(X7 t)
= @(x,1) + ($(t + At) — $(2))
/
(@bt + AL — ¢(x,1) VS, GJ(u) = NS, Gx}(u®) = NS, GH(G %) (6.182)
' achieving the description of the procedure. Combining the right-hand side
and the left-hand side of the resulting equation, we get:

The third term remains to be evaluated. This is done using the different

ga 1
operator (6.6), leading to the final expression: = +GANS(G +T) =0 . (6.183)

ot

It is worth noting that, like all other approaches based on a deconvolution
procedure, the efficiency of the present strategy will be conditionned by our
capability to find the approximate inverse operator. In practice, some com-
putations have been carried out using a fifth-order (I = 5) approximation of
the inverse filter kernel.

. In order to account for kinetic energy transfer with scales which are not
- ‘recovered by the deconvolution procedure, a relaxation term is introduced,
yielding

P(x,t + At) = ¢(x,t) + (Id — Py) (d(t + At) — ¢(t))

with

Pa= Z% '11;/0 Z(&—wf)a—% dé (?:1,78)

where d is the dimension of space and z¢ the ith coordinate of the center of
the filtering cell. In practice, the serie expansions are truncated to a finite
order. The repeated use of equation (6.177) makes it possible to compute the'
value of the new pointwise value at each time step. g

g?+G*NS(G, *ﬁ)=—§1,,—(1d—Gl‘1*G)*ﬁ , (6.184)

- where T" is an empirical relaxation time.
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A link of this model to artificial diffusion can be made by interpreting i
as the following evolution equation for the approximate defiltered field u®

ou®
ot

As the operator G is associated to a low-pass filter, its application
the Navier—Stokes operator has a regularizing effect, similar to the one of a
artificial dissipation procedure. The application of the approximate deconvo:
lution operator can then be interpreted as the reconstruction of higher-orde
numerical fluxes.

+ G Gk NS®) =0 . (6.185

6.7.3 Scale Residual Model

Maurer and Fey [224] propose to evaluate the full subgrid term, still defin
as the commutation error between the Navier—Stokes operator and the filte
(see Chap. 3 or equation (6.180)), by means of a two-grid level procedure
deconvolution procedure is no longer needed, but some self-invariance pr
erties of the subgrid term have to be assumed. First we note that a subgri

model, referred to as m(ii), is defined in order to minimize the residual E:

with

E=|NS,Gx(u) —m(Gxu) . (6.186
Assuming that the filter G has the two following properties:
— G is a projector,
~ G commutes with the Navier—Stokes operator in the sense that
NS o (Gxlu=NSEo (Gx) o (Gx)u=(Gx) o NSo (Gx)u , -

the residual can be rewritten as

E=(G¥x)o(NSolId—NS8o(Gx))u—mo(Gxu

We now introduce a set of filter G, k = 0, N, whose characteristic ler;ii'g; ’
Ay, are such that 0 = Ay < Ay—_1 < .... < Ag. The residual E}, obtained fo
the kth level of filtering is easily deduced from relation (6.187):

T Ep = (Gpx) o (NS o (Gy*) + NS o (Gix))u
—mo (Gr*)u
= (Grx)o Y (NSo(Gx) —NSo(Gjrax)u
§=0,k—1
—mo (Grx)u

To construct the model m, we now make the two followin ‘ sumptions:
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— The interactions between spectral bands are local, in that sense that the

influence of each spectral band gets smaller with decreasing values of j < k.
— The residuals between two filtering levels have the following self-invariance
' property:

(NS0 (Gjq1%) = NSo (Gix))u = a(NS o (Gjx) ~ NS o (G_1x)u,
(6.190)

where o < 1 is a constant parameter. It is important noting that this can
only be true if the cut-offs occur in the inertial range of the spectrum (see
the discussion about the validity of the dynamic procedure in Sect. 4.3.3).
Using these hypotheses, the following model is derived:

mo (Grrju= Gy (D> od)YNSo (Gpr) = NSo (Grprx))u, (6.191)

j=Lk

" where the operator (Gp*) o NS o (Ggy1%x) corresponds to a local recon-
struction of the evolution of the coarse solution Gg41 * u according to
the fluctuations of the fine solution Gy x u. The implementation of the
model is carried out as follows: a short history of both the coarse and the
‘fine solutions are computed on two different compuational grids, and the
‘model (6.191) is computed and added as a source term into the momentum
“equations solved on the fine grid. This algorithm can be written in the
following symbolic form:

qu = (J\f.SiAt + W(N‘Sz,m - N811c+1,2m)) u2+,1 ) (6.192)

designates the solution on the fine grid (kth filtering level) at
the (n+ 1)th time step, (NS} 4, refers to n applications of the discretized
Navier—Stokes operator on the grid associated to the filtering level k with
~ a time step At (i.e: the computation of n time steps on that grid without
any subgrid model), and w is a parameter deduced from relation (6.191).
+ The weight o is evaluated analytically through some inertial range con-
‘#:sideration, and is assumed to be equal to the ratio of the kinetic energy
".contained in the two spectral bands (see equation (4.121). An additional
correction factor (lower than 1) can also be introduced to account for the
* numerical errors.



7. Numerical Solution:
Interpretation and Problems

This chapter is devoted ta analyzing certain practical aspects of large-eddy
simulation. ‘

The first point concerns the differences between the filtering such as it is
defined by a convolution product and such as it is imposed on the solution
during the computation by the subgrid model. We distinguish here between
. statistical and dynamic interpretations of the filtering process. The analysis is
developed only for subgrid viscosity models because their mathematical form
makes this possible. However, the general ideas resulting from this analysis
can in theory be extended to other types of models. The second point has to
. do with the link between the filter cutoff length and the mesh cell size used
in the numerical solution. It is important to note that all of the previous
developments proceed in a continuous, non-discrete framework and make no
mention of the spatial discretization used for solving the equations of the
problem numerically. The third point addressed is the comparative analysis
of the numerical error and the subgrid terms. We propose here to compare
the amplitude of the two sources of error scale separation and numerical
discretization to try to establish criteria for the required numerical scheme
accuracy so that the errors committed will not overly mar the computed
solution.

7.1 Dynamic Interpretation
of the Large-Eddy Simulation

7.1.1 Static and Dynamic Interpretations: Effective Filter

The approach that has been followed so far in explaining large-eddy simula-
tion consists in filtering the momentum equations explicitly, decomposing the
non-linear terms that appear, and then modeling the unknown terms. If the
subgrid model is well designed (in a sense defined in the following chapter),
then the energy spectrum of the computed solution, for an exact solution
verifying the Kolmogorov spectrum, is of the form

E(k) = Koe?Pk~%3G2(k) (7.1)
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where G(k) is the transfer function associated with the filter. This is

classical approach corresponding to a static and explicit view of the ﬁlter}ip)g‘

process.

An alternate approach is proposed by Mason et al. [220-222], who first
point out that the subgrid viscosity models use an intrinsic length scale’
denoted A¢, which can be interpreted as the mixing length associated with
the subgrid scales. A subgrid viscosity model based on the large scales is.

written thus (see Sect. 4.3.2):
Vegs = A?]§| . (7
The ratio between this mixing length and the filter cutoff length A is

A_g, o
A 5

Referring to the results explained in the section on subgrid viscosity rﬁdd
els, Cy can be recognized as the subgrid model constant. Varying this constan

is therefore equivalent to modifying the ratio between the filter cutoff lerigth:
and the length scale included in the model. These two scales can consequeritly:
be considered as independent. Also, during the simulation, the subgrid s'calé§ .
are represented only by the subgrid models which, by their effects, impose'the
filter on the computed solution®. But since the subgrid models are not perfect;
going from the computed solution to the exact one does not correspond to'the:
application of the desired theoretical filter. This switch is ensured by applymg_

an implicit filter, which is intrinsically contained in each subgrid model. ‘Her

we have a dynamic, implicit concept of the filtering process that takes th }
modeling errors into account. The question then arises of the qualification’ o_f :
the filters associated with the different subgrid models, both for their:form

and for their cutoff length. s

The discrete dynamical system represented by the numerical 51mulat10n

is therefore subjected to two filtering operations:

— The first is imposed by the choice of a level of representation of the physma,l“
system and is represented by application of a filter using the Nav1er—Stokes

equations in the form of a convolution product.

— The second is induced by the existence of an intrinsic cutoff length i in the

subgrid model to be used.

In order to represent the sum of these two filtering processes, we ‘défine.
the effective filter, which is the filter actually seen by the dynamical system.
To qualify this filter, we therefore raise the problem of knowing what is‘the

share of each of the two filtering operations mentioned above.

1 They do so by a dissipation of the resolved kinetic energy —’rijj equal to the:

flux £ through the cutoff located at the desired wave numbc
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7.1.2 Theoretical Analysis of the Turbulence
Generated by Large-Eddy Simulation

We first go into the analysis of the filter associated with a subgrid viscosity
model. )

This section resumes Muschinsky’s [250] analysis of the properties of a
homogeneous turbulence simulated by a Smagorinsky model. The analysis
proceeds by establishing an analogy between the large-eddy simulation equa-
tions incorporating a subgrid viscosity model and those that describe the

motions of a non-Newtonian fluid. The properties of the latter are studied in

the framework of isotropic homogeneous turbulence, so as to bring out the
role of the different subgrid model parameters.

Analogy with Generalized Newtonian Fluids. Smagorinsky Fluid.
The constitutive equations of large-eddy simulation for a Newtonian fluid, at

1east in the case where a subgrid viscosity model is used, can be inter preted
differently as being those that describe the dynamics of a non-Newtonian
fluid of the generalized Newtonian type, in the framework of direct numerical
simulation, for which the constitutive equation is expressed

Oij = ~P0Oij + VsgsSsj (7.4)

vwhere oi; is the stress tensor, S the strain rate tensor defined as above, and
usgs will, be an invariant function of S. Effects stemming from the molecular
ylscos1ty are ignored because this is a canonical analysis using the idea of
‘an inertial range. It should be noted that the filtering bar symbol no longer
appears because we now interpret the simulation as a direct one of a fluid
having a non-linear constitutive equation. If the Smagorinsky model is used,

vies = 2715 = (CA)*s] (7.5)

'su_:ch a fluid will be called a Smagorinsky fluid.

Laws of Similarity of the Smagorinsky Fluid. The first step consists in
‘extending the Kolmogorov similarity hypotheses (recalled in Appendix A):

- 1. First similarity hypothesis. E(k) depends only on ¢, A; and A.

2. Second similarity hypothesis. E(k) depends only on € and A for wave
numbers k& much greater than 1/A;.

3. Third similarity hypothesis. E(k) depends only on'e et A if A < Ay.

.. The spectrum can then be put in the form:

E(k) = 23k =5/3G (11, Iy) (7.6)

where G; is a dimensio»less function whose two arguments are defined as:
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A 5 e 1/3
M= kAy, Ih=-—= _1_ . (7.7. gles(xycs) z fles(ma Cs) ) (7-16)
Ay G Lt

where x is the reduced variable x = knjes.

By comparing the dissipation computed by integrating this spectrum with
the one evaluated from the energy spectrum (7.10), the dependency of the
Kolmogorov constant as a function of the Smagorinsky constant is formulated
as: ‘

By analogy, the limit in the inertial r.ange of G is a quantity equivalent
to the Kolmogorov constant for large-eddy simulation, denoted Kijes(Cs):

Kles(os) = Gs(o) H2) . (78)

By introducing the shape function

1 1
: Ke (C) = (7.17)
11,11 les\“s o) o)
fles(k'Afa Cs) = gas‘%)‘l",n_z)l 3 (79) 2 fO gles(x, CS) 2 f ST gles(xa Cs)
y 112 o
the spectrum is expressed: ’ When this expression is computed using the formulas of Heisenberg—
© sb P ’ Chandrasekhar and Pao, it shows that the function Kjes does tend asymp-
E(k) = Kies(C5) £2/31~5/3 Fes(BAL CS) (710 totically to the value Ko = 1.5 for large values values of Cs, as the error is

negligible beyond Cs = 0.5. The variation of the parameter Kjes as a function
of Cs for the spectra of Heisenberg-Chandrasekhar and Pao is presented in
Fig. 7.1. When C is less than 0.5, the Kolmogorov constant is over-evaluated,
as has actually been observed in the course of numerical experiments [215].

These numerical simulations have also demonstrated that the damping func-
tion is subgrid-model dependent.

By analogy with Kolmogorov’s work, we define the dissipation scalé
the non-Newtonian fluid mes as:

. , 1/4 P
Mes = | 2 (7,
les E . .

For the Smagorinsky model, by replacing € with its value, we get:

. 4 T T T T T
Mes = Af C A (7 12)

Using this definition and postulating that Kolmogorov’s similarity theoryi
for the usual turbulence remains valid, the third similarity hypothesis sta,tedr
implies, for large values of the constant Ci:

. Pao —
35 + Heisenberg ----

B(k) = { lim Kis(Cs) ) ek hm fies(kmes; Cs) | (7.13
Cg—o00 Cg—o0

which allows us to presume that the two following relations are valid:

lim Kles(cs) = KO )

Cg~—+o0

hm fles(m C ) - (113) ) 0.5 “l
where f(z) is the damping function including the small scale viscous effects,‘ 0 L . L L L
0.1 0.156 0.2 0.25 0.3 0.35 0.4

for which the Heisenber-Chandresekhar, Kovazsnay, and Pao models have
already been discussed in Sect. 4.3.2. Ui
The corresponding normalized spectrum of the dissipation? is of the form ;

Cs

"Fig. 7.1. Variation of the Kolmogorov constant as a function of the Smagorinsky
- onstant for the Heisenberg-Chandrasekhar spectrum and the Pao spectrum.
2 The dissipation spectrum, denoted D(k), associated with the energy spectrum% 4

E(k) is defined by the relation:

D(k) = K*E(k)



210 7. Numerical Solution: Interpretation and Problems

Interpretation of Simulation Parameters

Effective Filter. The above results allow us to refine the analysis concerning
the effective filter. For large values of the Smagorinsky constant (Cs > 0.5),
the characteristic cutoff length is the mixing length produced by the modeél.
The model then dissipates more energy than if it were actually located at the °
scale A because it ensures the energy flux balance through the cutoff associ-
ated with a longer characteristic length. The effective filter is therefore fully
determined by the subgrid model. This solution criterion should be compared -
with the one defined for hot-wire measurements, which recommends that the
wire length be less than twice the Kolmogorov scale in developed turbulent *
flows. ,
For small values of the constant, it is the cutoff length A that plays the
role of characteristic length and the effective filter corresponds to the usual :
analytical filter. It should be noted in this case that the energy drainage -
induced by the model is less than the transfer of kinetic energy through t e
cutoff, so the energy balance is no longer maintained. This is reflected in
an accumulation of energy in the resolved scales, and the pertinence of th§
simulation results should be taken with caution. '
For intermediate values of the constant, i.e. values close to the theoretical
one predicted in Sect. 4.3.2 (i.e. Cs & 0.2), the effective filter is a combination
of the analytical filter and model’s implicit filter, which makes it difficult to
interpret the dynamics of the smallest resolved scales. The dissipation induced
by the model in this case correctly insures the equilibrium of the energy ﬂuxes
through the cutoff.

Microstructure Knudsen Number. It has already been seen (relation (7.12))
that the mixing length can be interpreted as playing a role analogous to
that of the Kolmogorov scale for the direct numerical simulation. The cutoff
length A, for its part, can be linked to the mean free path for Newtonian
fluids. We can use the ratio of these two quantities to define an equivalent
the microstucture Knudsen number K, for the large-eddy simulation:
A 1

Knm - Af - Cs t

Effective Reynolds Number. Let us also note that the effective Reynolds num%
ber of the simulation, denoted Rejes, which measures the ratio of the inertia
effects to the dissipation effects, is taken in ratio to the Reynolds number Re
corresponding to the exact solution by the relation: '

4/3
Reles:< 1 ) Re »

les
where 7 is the dissipative scale of the full solution. This decrease in the
effective Reynolds number in the simulation may pose some problems, if the
physical mechanism determining the dynamics of the resol* " scales depends:

(7.18)

7.1 Dynamic Interpretation of the Large-Eddy Simulation 211
RESOLVED SUBFILTER SUBGRID
SCALES SCALES SCALES RESOLVED SUBGRID
E(k) E(k): SCALES SCALES

A WIZ k TC/Z ‘It/A k
Fig. 7.2. Representation of different scale families in the cases of A, 17 < A (right)

and Agpp > A (left).

explicitly on it. This will, for example, be the case for all lows where critical
Reynolds numbers can be defined for which bifurcations in the solution are
associated?.

Subfilter Scale Concept. By analysis of the decoupling between the cutoff
length of the analytical filter A and the mixing length A;, we can define
three families of scales [220,250] instead of the usual two families of resolved
a,nd subgrid scales. These three categories, illustrated in Fig. 7.2, are the:

. 1 Subgrid scales, which are those that are excluded from the solution by

the analytical ﬁlter
2. Subfilter scales, which are those of a size less than the effective filter cutoff
length, denoted Aeg, which are scales resolved in the usual sense but
whose dynamics is strongly affected by the subgrid model. Such scales
exist only if the effective filter is determined by the subgrid viscosity
model. There is still the problem of evaluating A.g, and depends both
on the presumed shape of the spectrum and on the point beyond which we
consider to be “strongly affected”. For example, by using Pao’s spectrum
and defining the non-physically resolved modes as those for which the

energy level is reduced by a factor e = 2.7181..., we get:
Aegg = Cs a4, (7.20)
Ctheo

where Clipeo 18 the_ theoretical value of the constant that corresponds to
the cutoff length A.

(3 Numerical experiments show that too strong a dissipation induced by the subgrid
model in such flows may inhibit the flow driving mechanisms and consequently
> lead to unusable simulations. One known example is the use of a Smagorinsky
model to simulate a plane channel flow: the dissipation is strong enough to
prevent the transitio ™ turbulence.
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3. Physically resolved scales, which are those of a size greater than the
effective filter cutoff length, whose dynamics is perfectly captured by the
simulation, as in the case of direct numerical simulations.

Characterization of the Filter Associated with the Subgrid Model.
The above discussion is based on a similarity hypothesis between the prop-
erties of isotropic homogeneous turbulence and those of the flow simulated
using a subgrid viscosity model. This is mainly true of the dissipative effects;
which are described using the Pao spectrum or that of Heisenberg-Kovazsnay.
So here, we adopt the hypothesis that the subgrid dissipation acts like an
ordinary dissipation (which was already partly assumed by using a subgrid
viscosity model). The spectrum E(k) of the solution from the simulation can
therefore be interpreted as the product of the spectrum of the exact solutio
Eiot(k) by the square of the transfer function associated with the effectivi
filter Geg(k):

E(k) = Byoy (k)G (k)

Considering that the exact solution corresponds to the Kolmogorov sp
trum, and using the form (7.10), we get:

Gualk) = \/ K@) o ke, )

The filter associated with the Smagorlnsky model is therefore a smodt
filter in the spectral space, which corresponds to a gradual damping, very
different from the sharp cutoff filter. v

7.2 Ties Between the Filter and Computational Grld
Pre-filtering :

The above developments completely ignore the computational grid used for
solving the constitutive equations of the large-eddy simulation numerically.
If we consider this new element, it introduces another space scale: the spatial
discretization step Az for simulations in the physical space, and the maxnnum
wave number kpay for simulations based on spectral methods.

The discretization step has to be small enough to be able to correctly
integrate the convolution product that defines the analytical filtering. For;
filters with fastly-decaying kernel, we have the relation:

Az <A (7 23){

The case where Az = A is the optimum case as concerns the number of
degrees of freedom needed in the discrete system for performing the Slmula- ;
tion. This case is illustrated in Fig. 7.3. =
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Fig. 7.3. Representation of spectral decompositions associated with pre-filtering
(left) and in the optimum case (right).

The numerical errors stemming from the resolution of the discretized

_ system still have to be evaluated. To ensure the quality of the results, the
. numerical error committed on the physically resolved modes has to be neg-

ligible, and therefore committed only on the subfilter scales. The theoretical
analysis of this error by Ghosal in the simple case of isotropic homogeneous

" turbulence is presented in the following.

As the numerical schemes used are consistent, the discretization error
cancels out as the space and time steps tend toward zero. One way of mini-

© mizing the effect of numerical error is to reduce the discretization step while

maintaining the filter cutoff length, which comes down to increasing the ratio

A/ Az (see Fig. 7.3). This technique, based on the decoupling of the two space
- scales, is called pre-filtering [4], and aims to ensure the convergence of the

solution regardless of the grid®. It minimizes the numerical error but induces
more computations because it increases the number of degree of freedoms in

the numerical solution without increasing the number of degrees of freedom

in the physically resolved solution, and requires that the analytical filtering

be performed explicitly {4] [24]. Because of its cost®, this solution is rarely

used in practice.

Another approach is to link the analytical filter to the computed grid. The
analytical cutoff length is associated with the space step using the optimum
ratio of these quantities and the form of the convolution kernel is associated

4A simplified analysis shows that, for an nth-order accurate numerical method,
the weight of the numerical error theoretically decreases as (4/Az)™™. A finer
estimate is given in the remainder of this chapter.

3 For a fixed value of A, increasing the ratio A/Ax by a factor. n leads to an
" increase in the number of points of the simulation by a factor of n® and increases
#:: the number of time steps by a factor n in order to maintain the same ratio
~-between the time and space steps. In all, this makes an overall increase in the

: '_ cost of the simulation by a factor nt.
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with the numerical method. Let us point out a problem here that is analogous::
to that of the effective filter already mentioned: the effective numerical filter:
and therefore the effective numerical cutoff length, are generally unknown
This method has the advantage of reducing the size of the system as best '
possible and not requiring the use of an analytical filter, but it allows no"
explicit control of the effective numerical filter, which makes it difficult to’
calibrate the subgrid models. This method, because of its simplicity, is used:i‘ :
by nearly all the authors.

Also, we note the discrete problem associated with a fixed discrete scheme
as:
Ou,
== NSa(ug) (7.27)
ot
By taking the difference between (7.26) and (7.27), it appears that the
best possible numemcal method, denoted NSy, is the one that verifies the
relation:

NSoptoP =PoNS . (7.28)

7.3 Numerical Errors and Subgrid Terms The numerical error Enuy, associated with the NSy scheme, and which is

lyzed in the following, is defined as:
7.3.1 Ghosal’s General Analysis analyzed I the foflowing, 15 detined as

Ghosal [120] proposes a non-linear analysis of the numerical error in the solu- Erum =(PoNS-NSqoP) (1) . (7.29)
tion of the Navier-Stokes equations for an isotropic homogeneous turbulent
flow whose energy spectrum is approximated by the Von Karman model.
Classification of Different Sources of Error. In order to analyze &
estimate the discretization error, we first need a precise definition of it. In"4l
of the following, we consider a uniform Cartesian grid of N3 points, which
are the degrees of freedom of the numerical solution. Periodicity condltlons
are used on the domain boundaries. .

A first source of error stems from the approximation we make of a contin-
uous solution W by a making a discrete solution ug with a set of N® valu
This is evaluated as:

This represents the discrepancy between the numerical solution and the
optimum discrete one. To simplify the analysis, we consider in the following
that the subgrid models are perfect, 4.e. that they induce no error with respect
to the exact solution of the filtered problem. By assuming this, we can clearly
separate the numerical errors from the modeling errors.

The numerical error Epym,(k) associated with the wave number & is de-
composed as the sum of two terms of distinct origins:

— The differentiation error Fgs(k), which measures the error the discrete
;- operators make in evaluating the derivatives of the wave associated with
" k. Let us note that this error is null for a spectral method if the cutoff
frequency of the numerical approximation is high enough.
The spectrum aliasing error Eys(k), which is due to the fact that we are
computing non-linear terms in the physical space in a discrete space of finite
‘dimension. For example, a quadratic term will bring in higher frequencies
. than those of each of the arguments in the product. While some of these
frequencies are too high to be represented directly on the"discrete base,
they do combine with the low frequencies and introduce an error in the
. representation of them®.

|ud - P(ﬁ)| s
- where P is a definite projection operator of the space of continuous sblu-
tions to that of the discrete solutions. This error is minimum (in thesl?
sense) if P is associated with the decomposition of the continuous solutio
on a finite base of trigonometric polynomials, with the components ofs
being the associated Fourier coefficients. This error is intrinsic and canndt be
canceled. Consequently, it will not enter into the definition of the numerical”
error discussed in this present section. The best possible discrete solutionis
Mopt = P(ﬁ) i
The equations of the continuous problem are written in the symbolic form
M- Ns@)

where NS is the Navier—~Stokes operator. The optimum discrete solution t
is a solution of the problem: '
% =PoNST) ,

where P o NS is the optimal discrete Navier—Stokes operator which, in’ﬁlie’*_
fixed framework, corresponds to the discrete operators obtalned by a spectral_ ’
method.

6 Let us take the Fourier expansions of two discrete functions u and v represented
¢ by N degrees of freedom. At the point of subscript j, the expansions are ex-
- pressed:

N/2-1 . ' N/2-1 . ,
uj = Z ane(l(ZW/N)Jn), vj = Z T 12T/ N)jm) j=1N
n=—-N/2 m=—N/2

. .. The Fourier coefficient of the product w; = u;v; (without summing on j) splits

1nto the form:
Y @nlmt Y Gam
n+m=k n+m=k+N
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1.03 (second order)
0.82 (fourth order)

Estimations of the Error Terms. For a solution whose spectrum is of the .
form proposed by Von Karman:

oat(ke) = k3™ x { 0.70 (sixth order) (7.36)
ak* 0.5 (heigth order)
- (b+k2)7/6 (7.30) 0 (spectral)
with a = 2.682 and b = 0.417, and using a quasi-normality hypothesis for and the spectrum aliasing error oys(kc), which is equal to:
evaluating certain non-linear terms, Ghosal proposes a quantitative evalua- ke 1/2
tion of the different error terms, the subgrid terms, and the convection term, rs(ke) = { / Ers(k)d kJ (7.37)
for various Finite Difference schemes as well as for a spectral scheme. The 0

convection term is written in conservative form and all the schemes in space
are centered. The time integration is assumed to be exact. ‘
The exact forms of these terms, available in the original reference Work
are not reproduced here. For a cutoff wave number k. and a sharp cutoff filter,
simplified approximate estimates of the average amplitude can be derived for
some of these terms.
The amplitude of the subgrid term oy (kc), defined as

ke 1/2 w
Tsgs(kic) = [/0 ]T(k”dk} ) (7}:::

where 7(k) is the subgrid term for the wave number £, is bounded by: ;

is estimated as:

0.90 k2% (minimum estimation, spectral, no de-aliasing)

)220 ko %6 (maximum estimation, spectral, no de-aliasing)
) 0.46 ko Al (minimum estimation, second order)
1.29 kg :65 (maximum estimation, second order)

(7.38)

The spectrum aliasing error for the spectral method can be reduced to

zero by using the 2/3 rule, which consists of not considering the last third
of the wave numbers represented by the discrete solution. It should be noted
that, in this case, only the first two-thirds of the modes of the solution are
correctly represented numerically. The error of the finite difference schemes
of higher order is intermediate between that of the second-order accurate
~scheme and that of the spectral scheme.
. From these estimations, we can see that the discretization error dominates
.-the subgrid terms for all the finite difference schemes considered. The same
s true for the spectrum aliasing error, including for the finite difference
schernes Finer analysis on the basis of the spectra of the various terms
_shows that the discretization error dominant for all wave numbers for the
_second-order accurate scheme, whereas the subgrid terms are dominant at .
_the low frequencies for the heigth-order accurate scheme. In the former case,
he effective numerical filter is dominant and governs the solution dynamics.
ts cutoff length can be considered as being of the order of the size of the
c()mputatlonal domain. In the latter, its cutoff length, defined as the wave-
le’ngth of the mode beyond which it becomes dominant with respect to the
‘subgrid terms, is smaller and there exist numerically well-resolved scales.

gy - J 036 k239 upper limit
Tsgs(ke) = 0.62 k2*® lower limit  °

that of the sum of the convection term and subgrid term by:

Orot (k) = 1.04 K297 |

in which

Osgs (ke) o 05
Utot(kc) ¢

The amplitude of the differentiation error oa¢(k.), defined by:

re-filtering Effect. The pre-filtering effect is clearly visible from relations
(7:32) to (7.38). By decoupling the analytical from the numerical filter, two
ifferent cutoff scales are introduced and thereby two different wave numbers
or evaluating the numerical error terms and the subgrid terms: while the
utoff scale A associated with the filter remains constant, the scale associated
“with the numerical error (i.e. Az) is now variable.

By designating the ratio of the two cutoff lengths by Crap = Az /A < 1,
_ we see that the differentiation error oat(kc) of the finite difference scheme is

ke 1/2
odi(ke) = !i Edf(k?)dk} ,
0

is evaluated as:

The last term in the right-hand side represents the spectrum allaSJhg‘"error'
These are terms of frequencies higher than the Nyquist frequency, assoc1ated
the sampling, which will generate spurious resolved frequencies.
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reduced by a factor C;af, /* with respect to the previous case, since it varies

as k2/*. This reduction is much greater than the one obtained by increasing
the order of accuracy of the the schemes.

Thus, more detailed analysis shows that, for the second-order accurate
scheme, the dominance of the subgrid term on the whole of the solution
spectrum is ensured for Cyap = 1/8. For a ratio of 1/2, this dominance is
once again found for schemes of order of accuracy of 4 or more.

Conclusions. This analysis can be used only for reference, because it is
based on very restrictive hypotheses. It nonetheless indicates that the nu-
merical error is not negligible and that it can even be dominant in certain
cases over the subgrid terms. The effective numerical filter is then dominant
over the scale separation filter.

This error can be reduced either by increasing the order of accuracy of
the numerical scheme or by using a pre-filtering technique that decouples
the cutoff length of the analytical filter of the discretization step. Ghosal’s
findings seem to indicate that a combination of these two techniques would
be the most effective solution.

These theoretical findings are confirmed by the numerical experiments
of Najjar and Tafti [257] and Kravenchko and Moin [172], who observe
that the effect of the subgrid models is completely or partially masked b
the numerical error when second-order accurate methods are employed: it
should be noted here that practical experience leads us to less pessimist
conclusions than the theoretical analyses: large-eddy simulations performé
with a scheme accurate to the second order show a dependency with respect'to.
the subgrid model used. The effects of these models are not entirely masked,’
~ which justifies using them. However, no precise qualification exists today
the information loss due to the use of a given scheme. These observations’afe’
made empirically, case by case.

7.3.2 Remarks on the Use of Artificial Dissipations

Many comments have been made over recent decades on the sensitivity o
large-eddy simulation results, for example concerning the formulation of the
convection term [138,172], the discrete form of the test filter [257], and ‘the
formulation of the subgrid term [291], but there are far too many, tod"di
persed, and too far from general to be detailed here. Moreover, countless aal-
yses have been made of the numerical error associated with various schemes,
especially as concerns the treatment of the non-linear terms, which willinot:
be resumed here, but we will still take more special note of the findings'of
Fabignon et al. [94] concerning the characterization of the effective numenc 1
filter of several schemes. h

Special attention should still be paid to the discretization of the convective
terms. To capture strong gradients without having the numerical solution’pol-
luted with spurious high-frequency wiggles, the schemeis ve  ften stabilized
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by introducing artificial dissipation. This dissipation is added explicitly or
implicitly using an upwind scheme for the convection term. Introducing an
additional dissipation term for the large-eddy simulation is still controversial
[104, 110,239, 257, 306] because the effective filter is then very similar in form
to that which would be imposed by subgrid viscosity model, making for two
competing resolved kinetic energy spectrum mechanisms. The similarity be-
tween the numerical dissipation and that associated with the energy cascade
model is still being investigated, but a few conclusions have already been
drawn.

It seems that the total numerical dissipation is still greater than that of the
subgrid viscosity models, if no pre-filtering method is used. This is true even
for seventh-order accurate upwind schemes [18]. These two dissipations are
correlated in space (especially in the case of the Smagorinsky model), but have
different spectral distributions: a subgrid viscosity model corresponds to a
second-order dissipation associated with a spectrum of the form (k/k.)2E(k),
while an nth-order numerical dissipation is associated with a spectrum of the
form (k/k.)*E(k). For n > 2 (resp. n < 2), the numerical (resp. subgrid)
dissipation will be dominant for the highest resolved frequencies and the
subgrid (resp. numerical) dissipation will govern the dynamics of the low

frequencies.

;. The studies that have been made show a sensitivity of the results to
-the subgrid model used, which proves that the effects of the model are
not entirely masked by the numerical dissipation. The theoretical analysis
ipresented. above should therefore be taken relative to this. But consistently
swith it, Beaudan et al. [18] have brought out a reduction in the numerical

utofl length as the order of accuracy of the scheme increases. This type of

Ainding should nonetheless be treated with caution, because the conclusions

ay be reversed if we bring in an additional parameter, which is the grid
refinement. Certain studies have shown that, for coarse grids, i.e. high values
of the numerical cutoff length, increasing the order of accuracy of the upwind
scheme can lead to a degradation of the results [323].

This relative similarity between artificial dissipation and direct energy
cascade model has induced certain authors to perform “no-model”large-eddy

_simulations, with the filtering based entirely on the numerical method. Thus
~many flow simulations have been seen in complex geometries, based on the

tise of an third-order accurate upwind scheme proposed by Kawamura and

‘Kuwahara [165], yielding interesting results. In the compressible case, this

approach has been called the Monotone Integrated Large-Eddy Simulation

-(MILES) method [28,104,110].

The use of artificial dissipation therefore raises many questions, but is

“very common in simulations that are physically very strongly under-resolved

in complex configurations, because experience shows that adding subgrid
models does not ensure a monotonic solution. To ensure that certain variables
remain positive, such »s concentrations of pollutants or the temperature, it



. physically. We should also note the results of Beaudan and Moin [18] ‘and -
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scems to be necessary to resort to such numerical methods. Alternatives based
on local refinement of the solution, ¢.e. decreasing the effective cutoff length
by enriching or adapting the grid, have been studied by certain authors but
no final conclusion has been drawn®

While the Navier-Stokes equations contain energy information, they also
contain information concerning the signal phase. Using centered schemes for
the convection term therefore raises problems too, because of the dispersive
errors they induce in the high resolved frequencies.

Generally, estimates of the wave number beyond which the modes are
considered to be well resolved numerically vary from 24z to 12Az, depending
on the schemes and authors.

8. Analysis and Validation
of Large-Eddy Simulation Data

8.1 Statement of the Problem

8.1.1 T f Inf tion Contained i L -Eddy Si ti
7.3.3 Remarks Concerning the Time Integration Method ype of tniormation Contained in a Large y Simulation

The solution to the equations that define the large-eddy simulation furnishes
explicit information only on the scales that are resolved, i.e. those that are
left after reduction of the number of degrees of freedom in the exact solution.
We are therefore dealing with information that is truncated in space and
time. The time filtering is induced implicitly by the spatial filtering because,
s the filtering eliminates certain space scales, it eliminates the corresponding
time scales with them (see footnote p. 13).

. The information of use for analysis or validation is what is contained in
those scales that are both physically and numerically well-resolved. It should
‘be remembered that, since the effective numerical and physical filters are
unknown, the usable scales are most often identified empirically.

... Adopting the assumption that all the scales represented by the simula-
tion are physically and numerically well-resolved, the statistical average of
the usable resolved field is expressed (@). The statistical fluctuation of the
resolved field, denoted ", is defined by:

Large-eddy simulation is ordinarily addressed using a spatial filtering, but
without explicitly stating the associated time filtering. This is due to the
fact that most computations are made for moderate time steps (CFL =
uAt/Az < 1) and it is felt that the time filtering effects are masked by
those of the space filtering. Choi and Moin [56], however, have shown b
direct simulations of a plane channel flow that the time filtering effects can
be very large, even for CFLs of the order of 0.5, since the turbulence canng
be maintained numerically if the time step is greater than the characterist
time associated with the Kolmogorov scale. Most authors use second-order
accurate integration methods, but no complete study has been published
to date to determine what time scales are well resolved numerically ‘ati

Mittal and Moin [239], who showed that the use of artificial viscosity affed
the solution of a very large share of the simulated time frequencies (aboit
75% for the particular case studied). ‘ .

w=uy— (W) . (8.1)
.. The difference between the statistical average of the resolved scales and
that of the exact solution is defined as:

{wi) — (@) = (), (8.2)
which corresponds to the statistical average of the unresolved scales. The

eynolds stresses computed from the resolved scales are equal to (u;ay).
The difference from the exact stresses (uifulf), where the exact fluctuation is

j
defined as u’® = u — (u), is:

(i) = ((ui — (u3))(uy — (u;)))
= (uiug) ~ (u)(u;)
= (W% + 7i5) — (@i + ui) (u; + uf)
= (W) + (7is) — (@) (T5) — (i) (B5) — (@) () — (uf) ()
= (W) + (7ig) — (ui) (@5) — (@) () — (uf) ()



222 8. Analysis and Validation

Since the subgrid scales are not known, the terms containing the contri-
bution (u’), cannot be computed from the simulation. When the statistical -
average of the subgrid modes is very small compared with the other terms,
we get:

(’U/e /e> <ui’u;/> + <Tij> (83) .

The two terms in the right-hand side can be evaluated from the numerical :
simulation, but the quality of the model’s representatlon of the subgrid tensor
partly conditions that of the result.

8.1.2 Validation Methods

The subgrid models and their various underlying hypotheses can be validated
in two ways [99]:

— A priori validation. The exact solution, which is known in this case,
filtered analytically, leading to the definition of a fully determined’
solved field and subgrid field. The various hypotheses or models can th
be tested. The exact solutions are usually generated by direct numerical
simulations at moderate or low Reynolds numbers, which limits the fi
of investigation. A priori tests like this have also been performed using
experimental data, making it possible to reach higher Reynolds nurnbers
This type of validation raises a fundamental problem, though. By compar
ing the exact subgrid stresses with those predicted by a subgrid mode
evaluated on the basis of the filtered exact solution, the effects of" ‘the
modeling errors are neglected and the implicit filter associated with' th
model is not considered’. This means that the results of a priori Va,hdatlon
are only relative in value.

— A posteriori validation. Here, we perform a large-eddy simulation’ dom
putation and validate by comparing its results with a reference solutlon
This is a dynamic validation that takes all the simulation factors, 1nt0
consideration, while the previous method is static. Experience shows tha
models yielding poor a priori results can be satisfactory a postemom, an
vice versa [269]. It is more advantageous to validate models a posterior
because it corresponds to their use in the simulation; but it is sometimes .
difficult to draw any conclusions on a precise point because of the multxtud :
of often imperfectly controlled factors at play in a numerical sxmulqpl 1.

ja—y

This field could not have been obtained by a large-eddy simulation since it isa
solution of the filtered momentum equations in which the exact subgrid’ tensor
appears. In the course of a simulation, the subgrid model is applied to a velocit;
field that is a solution of the momentum equation where the modeled subgri
tensor appears. These two fields are therefore different in theory. Consequently,
in order to be fully representative, an a priori test has to be performed on the -
basis of a velocity field that can be obtained from the subgr  aodel studied. !

tensor computed from the T* field is denoted 7} (W
. are solutions of the following momentum equations:
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8.1.3 Statistical Equivalency Classes of Realizations

The subgrid models are statistical models and it seems pointless to expect
them to produce deterministic simulations in which the resolved scales coin-
cide exactly with those of other realizations, for example of the experimental
sort. On the other hand, large-eddy simulation should correctly reproduce the
statistical behavior of the scales making up the resolved field. Equivalency
classes can thus be defined among the realizations [225] by considering that
one of the classes consists of realizations that lead to the same values of
certain statistical quantities computed from the resolved scales.

Belonging to the same class of equivalency as a reference solution is a
validation critérion for the other realizations. If we set aside the numerical
errors, we can define the necessary conditions on the subgrid models such that
two realizations will be equivalent, by verifying these validity criteria. These
conditions will be discussed in the following sections. A subgrid model can
thus be considered validated if it can generate realizations that are equivalent

.to a reference solution, in a sense defined below.

Theoretically, while we overlook the effect of the discretization on the
modeling, it can be justifiably thought that a model reproducing the inter-
scale interactions exactly will produce good results, whereas the opposite

proposition is not true. That is, the idea of sufficient complexity of a model

has to be introduced in order to obtain a type of result on a given configu-
ration with a tolerated margin of error in order to say what a good model
is. The idea of a universal or best model might not be rejected outright,
but should be taken relatively. The question is thus raised of knowing what
statistical properties two subgrid models should share in order for the two
resulting solutions to have common properties.

Let T and T* be the filtered exact solution and the solution computed
with a subgrid model, respectively, for the same filter. The exact (unmodeled)
subgrld tensor corresponding to W is denoted 7;;, and the modeled subgrid
*). The two velocity fields

%%+V.(ﬁ®ﬁ)=—Vﬁ+VV2ﬁ—V'T 3 (8‘4)
o v @ eu)=-V-p*+vVu -V (@) (8.5)

ot

A simple analysis shows that, if all the statistical moments (at all points
f space and time) of 7'” conditioned by the U field are equal to those of
77;(@*) conditioned by u*, then all the statistical moments of @ and T@"

w111 be equal. This is a full statistical equivalency, which implies that the
subgrid models fulfill an infinity of conditions. To relax this constraint, we

_define less restrictive equlvalency classes of solutions which are described
“in’ the following secti

. They are defined in such a way as to bring out



225
224 8. Analysis and Validation 8.1 Statement of the Problem

the necessary conditions applying to the subgrid models, in order to qualify-
them [225]. We try to define conditions such that the statistical moments of

moderate order? (1 and 2) of the field resulting from the large-eddy simulation
" are equal to those of a reference solution u. 4

Equivalency of Second-Order Moments. We now base the equivalency
relation on the equality of the second-order moments of the refs?lved scales.
Two realizations will be called equivalent if the following conditions are sat-
isfied: ’

Equivalency of First-Order Moments. The equivalency relation is bu1lt

il (@) = () (8.12)

on the equality of the first-order statistical moments of the realizations. A (wa,) = (@) (8.13)
velocity and a pressure field are associated with each realization. Let (4, p) _ _1_] _1_1_* ' (8.14)
and (T*, p*) be the doublets associated with the first and second realizations, - (waujue) = (@;w;0) ‘
respectively. The evolution equations of the first-order statistical moments of’ i) = (B'%;) (8.15)
the velocity field of these two realizations are expressed: ' BSi;) = @*Ejj) , (8.16)
a(m) o B ou; oui\ _  Oui 0up (8.17)
SV (w) e @) (5.0) By o) = (ow O

- — . mn 2 1 —_— . —_— . 1 T —_— T 1 ° ' a—

=TV R AVHE = V) - V- (@ w) - (W e (), Analysis of the equation for the second-order moments (u;T;) shows tha‘?,
Bl ‘ in order for two realizations to be equivalent, the following necessary condi-
%Z + V- (@) ® (@) (8;‘7)' tion must be satisfied:

=V (F") +uVH@) - V- (r* (@) - V- (@ @) — (") ® (ﬁ*‘.))f',, (raxSig) + (7315s) — 5% (@se) + (@min))
’ 0
" Oy

where () designates an ensemble average performed using independen‘g’ire :
alizations. The two realizations will be called equivalent if their first- an
second-order moments are equivalent, i.e.

= (T;Icg;;j) + (T}‘;JS’_L) (@i + (ﬁ;Tfk»

This condition is not sufficient. To obtain such an realization, the equality

(W) = (@}) , (88) ‘ ‘of the third-order moments also h.a§ to be ensu'red. It ig} ?otesdotnh?;uletlslzbng(;li;

D 7 20y linear coupling prohibits the definition of sufficient condition: ¢
=) (89) “model to ensure the equality of the nth-order moments of the resolved fiel

(wd;) = (‘ﬁ;“‘ﬁ;‘ ) (8.10) “without adding necessary conditions on the equality of the (n + 1)th-order

“moments.

quivalency of the Probability Density Functiqqs. We now base “che
efinition of the equivalency classes on the prob‘ablhty density f.uncftil(ig
orob(V, %, 1) of the resolved scales. The field V is t‘he test v'eloc1ty de
from which the conditional average is taken. The function fprob is defined as
“the statistical avérage of the one-point probabilities: :

fprob(va X, t) = <5(ﬁ(x7 t) - V)) 3 (8'18)

condition is that the resolved and subgrid stresses be statistically equivalent
The last condition is expressed:

(i) = (t55) + Cij . )

where C;; is a null-divergence tensor. This condition is not sufficient because
a model that leads to a good prediction of the mean stresses can generate
an error on the mean field if the mean resolved stresses are not correct: To
obtain a sufficient condition, the equivalency of the stresses (7;7;) and (@} ;)

and is a solution of the following transport equation:
must be ensured by another relation. -

“Ofprots . Ofpeon _ O { o + Omis _ AVETHITES V)} . (8.19)
otV am, = v 7 ae; T aa g

Two realizations can be called equivalent ift

2 Because these are the quantities sought in practice.



226 8. Analysis and Validation

fprob(va X, t) = f*rob(va X,t) ’ (820)
wy)u=Vv) = [@yu=V) , (8:21)
(@(y)a;(y)[a = V) = (@a(y)a=V) . (8.22)

Once the pressure gradient is expressed as a function of the velocity (by
an integral formulation using a Green function) and the conditional average
of the strain rate tensor is expressed using gradients of the two-point condi-
tional averages, equation (8.19) can be used to obtain the following necessary
condition:

1 52 _ Ti — s 0 -

1 0* T — Yj
:—— *M(x) =V _ud?’
(9y 83/ <zkl ( ) >|X—y| y
0 * |k _
+;1_Ig(8yz< ) =V)+C;

in which the divergence of vector C; is null. It is noted that the conditio
defined from the one-point probability density uses two-point probabilities
We again find here the problem of non-localness already encountered whe
the equivalency class is based on statistical moments. A more restrictiv
condition is:

(rik[U(x) = V) = (Tp [T (x) = V) . (8:28

. 8.1.4 Ideal LES and Optimal LES

An abstract subgrid model can be defined, which is in all senses ideal [1
An LES using this model will exactly reproduce all single-time, multip
statistics, and at the same time will exhibit minimum possible error i

stantaneous dynamics. Such a LES will be referred to as ideal LES. Using:

the same notations as in Sect. 8.1.3, ideal LES is governed by the conditio

average
dwr _ /du)_ . ‘
dt dat| ’

where & @nd W" are the solution of the exact LES equation and the LES'

equation with a subgrid model, respectively. It can be shown that such 1de

LES is associated to the minimum mean-square error between the evolutlon”
of the LES field T*(t) and the exact solution u(t), defined as an mstantaneous‘

pointwise measurement on 9d/ot:
8@‘;" oty
ei(x) = - =
&)=~
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Equivalently, this error can be evaluated using the exact and the modeled
subgrid forces, referred toas M=V -7 and m =V - 7%

e(x) = M(x) —m(x) . (8.26)
The ideal subgrid model 7* is then such that
V- =m=Mu=u") . (8.27)

This model is written as an average over the real turbulent fields whose
resolved scales match the current LES field, making it impossible to compute
in practical applications. In order to approximate in an optimal sense this
ideal model, several authors (2, 19,62, 175] propose to formally approximate
the conditional average by a stochastic estimation. These new models can be
referred to as optimal or nearly-optimal models, leading to optimal LES. The
estimation of the subgrid force is based on the convolution of an estimation
kernel K;; with velocity event data at N points (&1, ...,&n):

W®=/%®&wwﬁm%mKWﬁM®, (8.28)

where E; is an event vector. Chosing
B(6, ) = (LT (€), T (E)T(E) ) (3.29)
we recover the expansion
i) = )+ [ Byl 0T €
+ [ O ET A (B30

The random mean square error hetween M; and m; is minimal when

<ei(X)Ek(7ll; 777N)) =0 , (831)

yielding the following definition of the optimal kernel Kj;

(Mi(X)Ep(n1, ) = /Kij(xa§1>-"a€N)
X (Ej(é-ly"'7€N)Ek(n17"'anN)) dfl...dgN (8.32)

The resulting optimal subgrid models have the property that the corre-
-ﬂlatlon of the parametrized subgrid force with any event data is the same as
e correlation of the exact subgrid force with the same event data:

(mi(x) (&1, .., 6n)) = (Mi(X) B (61,5 €n)) - (8.33)
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8.2 Correction Techniques

As relations (8.2) and (8.3) show, the statistical moments computed from :
the resolved field cannot be equal to those computed from the exact solution.
In order to be able to compare these moments for validation purposes, or
analyze the large-eddy simulation data, the error term has to be evaluated
or eliminated. Several possible techniques are described in the following foi"
doing this. '

8.2.1 Filtering the Reference Data

The first solution is to apply the same filtering as was used for the scai?
separation to the reference solution [243]. Strict comparisons can be made
with this technique, but it does not provide access to theoretically usabl}a
values, which makes it difficult to use the data generated by large-eddjr
simulation for predicting physical phenomena, because only filtered data are
available. In order for physical analyses to be fully satisfactory, they should
be made on complete data. However, analysis is possible when the quantities:
considered are independent or weakly dependent on the subgrid scales®.

Moreover, this approach is difficult to apply when the effective filter is no
known analytically, because the reference data cannot be filtered consisteriﬂy
It may also be difficult to apply an analytical to experimental data, because:
in order to do so, access is needed to the data, spectra that are to serve for:
validation or analysis. We see another source of problems cropping up here.
[256): experimentally measured spectra are time spectra in the vast majéf‘it
of cases, while the large-eddy simulation is based on space filtering. This maj
~ introduce essential differences, especially when the flow is highly anisotropic.
in space, as it is in the regions near a solid wall. Similar remarks can be made
concerning the spatial filtering of data from a direct numerical simulation for
a priori test purposes: applying a one- or two-dimensional filter can prodﬁ?e :
observations that are different from those that would be obtained wi’.ch‘-‘a,
three-dimensional filter. e

8.2.2 Evaluation of Subgrid Scale Contribution

A second solution is to evaluate the error term and reconstruct from the -
filtered solution moments that are equal to those obtained from the full field.

Use of 'a De-filtering Technique. One way is to try to reconstruct the full

field from the resolved one, and compute the statistical moments from the:
reconstructed field. In theory, this makes it possible to obtain exact results'if -
the reconstruction itself is exact. This reconstruction operation can be inter-
preted as de-filtering, i.e. as an inversion of the scale separation operation: As

3 As is generally the case for the mean velocity field. See the examples given:,in
Chap. 11.
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was seen in Chap. 2, this operation is possible if the filter is an analytical one
not belonging to the class of Reynolds operators. In other cases, ¢.e. when the
effective filter is unknown or possesses pro jector properties, this technique is
not strictly applicable and we have to do with an approximate recontruction.
We then use a technique based on the differential interpretation of the filter
analogous to the one described in Sect. 6.1.1. With this interpretation, we
can express the filtered field T as:

e — o H2n
n=1
This relation can be formally inverted writing:
o —2n 8211 -
u = <1d+ oAy prorll BERUE (8.35)
n=1

and, by interpreting the differential operator as an expansion function of the
small parameter A, we get:

ad -—2n 82”

n=1

(8.36)

By truncating the series at some arbitrary order, we thus get a recontruc-

. tion method that is local in space and easy to use. The difficulty resides in

the choice of the coefficients C,,, which describe the effective filter and can
only be determined empirically.

Use of a Subgrid Model. Another means that is easier to use is to com-
pute the contribution of the subgrid terms by means of the subgrid stresses
representation generated by the model used in the simulation. This technique
cannot evaluate all the error terms present in equations (8.2) and (8.3) and

- can only reduce the error committed in computing the second-order moments.

It does, however, offer the advantage of not requiring additional compu-
tations as in the recontruction technique.

It should be noted here that this technique seems to be appropriate when
the models used are structural, representing the subgrid tensor, but that it
is no longer justified when functional models are used because these ensure
iny an energy balance.

8.3 Practical Experience

‘~iﬁractice shows that nearly all authors make comparisons with reference

data or analyze large-eddy simulation data with no processing of the data.

The agreements observed with the reference data can then be explained by
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the fact that the quantities being compared are essentially related to scal
ranges contained in the resolved field. This is generally true of the first-
order moments (i.e. the mean velocity field) and, in certain cases, of the
second-order moments (the Reynolds stresses). This lack of processing prior
to data analysis seems to be due mainly to the uncertainties in the techniqués
for evaluating the contributions of the subgrid sCales and to the difficulty
of ad hoc filtering of the reference data. Large-eddy simulation also allows
a satisfactory prediction of the time frequency associated with large-scale
repetitive phenomena (such as vortex shedding) and the first harmonics of
this frequency for fine mesh.

9. Boundary Conditions

Like all the other approaches mentioned in the introduction, large-eddy simu-
lation requires the setting of boundary conditions in order to fully determine
the system and obtain a mathematically well-posed problem. This chapter is
devoted to questions of determining suitable boundary conditions for large-
eddy simulation computations. The first section is a discussion of general
order, the second is devoted to the representation of solid walls, and the
third discusses methods used for representing an unsteady upstream flow.

9.1 General Problem

9.1.1 Mathematical Aspects

* The discussions so far clearly show that the constitutive equations of large-

eddy simulation can be of a degree different from that of the original Navier—
Stokes equations. This is trivially verified by considering the differential in-

. _terpretation of the filters: the resolved equations are obtained by applying a

differential operator of arbitrarily high order to the basic equations. Moreover,

it has been seen that certain subgrid models generate high-order derivatives

of the velocity field.
This change of degree in the resolved equations raises the problem of

‘}determinirng the associated boundary conditions, because those associated

ith the equations governing the evolution of the exact solution can no longer
be used in theory for obtaining a mathematically well-posed problem [108,
332] This problem is generally not considered, argumg the fact that the
higher-order terms appear only in the form of O(A ),p > 1 perturbations
f the Navier-Stokes equations and the same boundary conditions are used
both for the large-eddy simulation and for direct numerical simulation of the
avier—Stokes equations. Moreover, when the effective filter is unknown, it is

o longer possible to derive suitable boundary conditions strictly, which also
leads to the use of the boundary conditions of the basic problem.

.1.2 Physical Aspects

The boundary conditions, along with the similarity parameters of the equa-
tions, specify the flow

. determine the solution. These conditions represent
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the whole fluid domain beyond the computational domain. To specify the.
solution completely, these conditions must apply to all of its scales, i.e. to all
the space-time modes it comprises. T
So in order to characterize a particular flow, the amount of information:
in the boundary conditions is a function of the number of degrees of freedo
of the boundary condition system. This poses the problem of representing.a;
particular solution, in order to be able to reproduce it numerically. We hav
a new modeling problem here, which is that of modeling the physical tes
configuration. ‘ i
This difficulty is increased for the large-eddy simulation and direct numer-'
ical simulation, because these simulations contain a large number of degrée
of freedom and require a precise space-time deterministic representation’of
the solution at the computational domain boundaries. o
Two special cases will be discussed in the following sections: that of rep
resenting solid walls and that of representing a turbulent, inflow. The problém
of the outflow conditions, which is not specific to the large-eddy simulatiot
technique, will not be addressed®. i

in which 7, ;; = l/gij(:l,', y,0). The friction velocity u, is defined as:

Ur = /Ty . (9.2)

In the case of the canonical boundary layer, we get:

®

8'[1.1

Ur = I/——az(l',y, 0) . (93)

We define the Reynolds number Re, by:
Re, = —L . (9.4)
The reduced velocity u*, expressed in wall units, is defined as:

ut =u/fu, . - (9.5)

The wall coordinates (z+,y™, 2%) are obtained by the transformation:

@yt 2T) = @/l y /b, /1) (9.6)

where the viscous length [, is defined as I, = v/u,.

9.2 Solid Walls

Statistical Description of the Canonical Boundary Layer. The boundary layer
is divided into two parts: the inner region (0 < 2 < 0.26) and the outer region
(0.26 < z). This decomposition is illustrated in Fig. 9.1. In the inner region,
the dynamics is dominated by the viscous effects. In the outer region, it is
controlled by the turbulence. Each of these regions is split into several layers,
corresponding to different types of dynamics.

9.2.1 Statement of the Problem

Specific Features of the Near-Wall Region. The structure of the botind-
ary layer flow has certain characteristics that call for special treatment-in ’che
framework of large-eddy simulation. In this section, we describe the eleriénts
* characteristic of the boundary layer dynamics and kinematics, which-shows
up the difference with an isotropic homogeneous turbulence. For a detailed
description, the reader may refer to the work of Cousteix [68].

Definitions. Here we adopt the ideal framework of a flat-plate, tuitbulent
boundary layer, without pressure gradient. The external flow is in thg (Oz)
direction and the (Oz) direction is normal to the wall. The external velocity is
denoted Us. In the following, the Cartesian coordinate system will be déﬁ()te_d
either (x,y,2) or (z1,z9,23), for convenience. Similarly, the velocity vector
is denoted (wu,v,w) or (uy,us,us3). ,f‘
We first recall a few definitions. The boundary layer thickness ¢ is defined
as the distance from the plate beyond which the fluid becomes irrotational,

and thus where the fluid velocity is equal to the external velocity. _’
The wall shear stress 7, is defined as:

) / OUTER LAYER

ooyt

To=1/To1s+ 7203 (9.1)

1 INNER LAYER

! See [69] for a specific study of exit boundary conditions for the plane channel:

‘ ig. 9.1. Mean longitudinal velocity profile for the canonical turbulent boundary
flow case. :

“layer; and its decompostion into inner and outer regions. _
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In the case of the canonical boundary layer, we have three layers in the

inner region in which the mean longitudinal velocity profile follows specia;
laws. The positions of these layers are referenced in the reduced coordinat
system, because the dynamics of the inner region is dominated by the wal
effects and I, is the pertinent length scale for describing the dynamics. The
characteristic velocity scale is the friction velocity. These three layers are the:

— Viscous sublayer: 2T < 5, in which

(W (z*)) =2% . 9.7)

— Buffer layer: 5 < 2+ < 30, where
(uf (z7)) = 5lnzt - 3.05 . (9.8
— Prandtl or logarithmic inertial layer: 30 < z*; 2/6 < 1, for which
mfuﬂ):lhu++&5imL k=04 . 9.9

The outer region includes the end of the logarithmic inertial region a
the walke region. In this zone, the characteristic length is no longer I, bu
rather the thickness §. The characteristic velocity scale remains unchanged
though. The average velocity profiles are described by:

— For the logarithmic inertial region:

E&Q:Am%?+3

Ur

where A and B are constants;
— For the wake region:

M=Aln&+B+EW(E) ,
v K 1)

Ur

Clauser as:
W (z) = 2sin®(7z/2)

Concerning the Dynamics of the Canonical Boundary Layer. Experi
and numerical studies have identified dynamic processes within the bound
ary layer. We will summarize here the main elements of the boundary laye
dynamics that originate the turbulence in the near-wall region.

Observations show that the flow is highly agitated very close to the-wall

consisting of pockets of fast and slow fluid that organize in ribbons parallel to.
the outer velocity (streaks). The low-velocity pockets migrate slowly outward

in the boundary layer (ejection) and are subject to an inst: ity that:make
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them explode near the outer edge of the inner region. This burst is followed by
an arrival of fast fluid toward the wall, sweeping the near-wall region almost
parallel to it. These highly intermittent events in time and space induce
strong variation in the unsteady Reynolds stresses and originate a very large
part of the production and dissipation of the turbulent kinetic energy. These
variations produce fluctuations in the subgrid dissipation that can reach 300
% of the average value and can make it change sign. Analyses of direct

numerical simulations {130, 156,196, 270] indicate that a very intense small

scale dissipation in the buffer region is correlated with the presence of sheared
layers that form the interfaces between the fluid pockets of different velocities.
These mechanisms are highly anisotropic. Their characteristic scales in the

ngitudinal and transverse directions A, and )y, respectively, are such that

‘AT & 200 — 1000 and )\+ 100. The maximum turbulent energy production
18 observed at z+ =~ 15. This energy production at small scales gives rise to a
~high backward energy cascade and associated with the sweeping type events.

he forward cascade, for its part, is associated with the ejections.

' In the outer regions of the boundary layer where the viscous effects no
ynger dominate the dynamics, the energy cascade mechanism is predomi-
ant. Both: cascade mechanisms are associated preferentially with the ejec-

€ = “Tijgij = €MS + efs ) (9'13)
eMS = —(ri) (Sis) (9-14)
e = —((7i5 — <Tij>)(?§ij - <_§1J>)> : (9.15)

(AN
“The eMS is related to the mean strain, and accounts for an enhancement
subgrid kinetic energy in the presence of mean-flow gradients. The second
m, which is linked to the strain fluctuations, represents the redistribution
f:energy without affecting the mean flow directly.

A priori tests [128-130] perfomed using plane channel flow and c1rcular
pe data reveal that the net effect of the coupling is a forward energy transfer,

2It differs from the splitt” ™ proposed by Shao (see Sect. 6.5.1).
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— The fluctuating strain part results in a net backward kinetic cascade in!

zone located in the buffer layer, with a maximun near 2+ = 15, This net -
backward cascade is correlated to the presence of coherent events associated

to turbulence production.

Kinematics of the Turbulent Boundary Layer. The processes described abd&e :

5

are associated with existence of coherent structures [278]. ,5;
The buffer layer is dominated by isolated quasi-longitudinal structure

that form an average angle with the wall of 5% at 2+ = 15 and 150 at 2+ — 30,

Their mean diameter increases with their distance from the wall3, v
The logarithmic inertial region belongs both to the inner and outer r
gions, and thus contains characteristic space scales, which is compatible wit}

fF

the existence of two different types of structures. The dynamics is governed -

by quasi-longitudinal and arch structures. The quasi-longitudinal structus
can be connected to transverse structures and form an angle with the s

face that varies from 15 to 30°. The span of the arch structures is of the:

order of the width of the slow-fluid pockets at the bottom of the layer, ?Lila
increases linearly with the distance from the wall. The relative number

quasi-longitudinal structures decreases with the distance from the wall, utitﬂ -

it cancels out at the beginning of the wake region. .
The wake region is populated with arch structures forming an angle of
459 with the wall. Their z and y spacing is of the order of 4.

Resolving or Modeling. The description we have just made of the bound-
ary layer flow structure clearly shows the problem of applying the large-
eddy simulation technique in this case. Firstly, the mechanisms originating
the turbulence, i.e. the flow driving mechanisms, are associated withfixed
characteristic length scales on the average. Also, this turbulence production is
associated with an backward energy cascade, which is largely dominant over
the cascade mechanism in certain regions of the boundary layer. These two
factors make it so that the subgrid models presented in the previous chapters
become inoperative because they no longer permit a reduction of the nl;rj;ber
of degrees of freedom while ensuring at the same time a fine representation of
the flow driving mechanisms. There are then two possible approaches [244]:

= Resolving the near-wall dynamics directly. Since the production thécha-
nisms escape the usual subgrid modeling, if we want to take them into
account, we have to use a sufficiently fine resolution to capturé them.
This is illustrated in Fig. 9.2. The solid wall is then represented by a;
no-slip condition: the fluid velocity is set equal to that of the solid wall,

This equality implicitly relies on the hypothesis that the mean frgéé_v path'

of the molecules is small compared with the characteristic scales ‘Qf‘kthe‘

3 Tt should be noted that contradictory observations can be found. Lamballais
[176] observes that the most probable angle of the vorticity (projected on a
plane perpendicular to the wall) is close to 90% for 5 < 2t < 25, which. goe;
against the model of longitudinal vortices at the wall. 1
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© motion, and that these scales are large compared with the distance of the

first grid point from the wall. In practice, this is done by placing the first
point in the zone (0 < 2+ < 1). To represent the turbulence production
mechanisms completely, Schumann [300] recommends a spatial resolution
such that A, < 10,47 <5 and Ay < 2. Also, Zang [365] indicates that
the minimum resolution for capturing the existence of these mechanisms
is Z;r < SO,Z; < 30 and that three grid points should be located in
the 2™ < 10 zone. Zahrai et al. [364] indicate that A7 =~ 100, 4} = 12
should be used as an upper limit if a second-order accurate numerical
method is used. These values are given here only for reference, since
larger values can also be found in the literature. For example, Piomelli
[264] uses Zr = 244 for a plane channel flow. This implies using a large
number of degrees of freedom. Chapman [53] estimates that representing
the dynamics of the inner region, which contributes about one percent
to the thickness of the full boundary layer, requires O(Re'®) degrees of
freedom, while only O(Re%%) are needed to represent the outer zone. This
corresponds to Z;I- ~ 100, Z; ~ 20 and Z;_ < 2. Considering that non-
isotropic modes must be directly resolved, Bagget et al. [10] show that the
number of degrees of freedom of the solution (in space) scales as Re2.

Modeling the near-wall dynamics. To reduce the number degrees of freedom
and especially avoid having to represent the inner region, we use a model

. for representing the dynamics of the zone included between the first point

of the grid and the solid wall (see Fig. 9.2). This is a special subgrid model
called the wall model. Since the distance from the first grid point to the

‘wall is greater than the characteristic scales of the modes existing in the
“modeled region, the no-slip condition can no longer be used. The boundary

condition will apply to the values of the velocity components and/or their
gradients, which will be provided by the wall model. This approach makes

RS K

..................

X

ig. 9.2. Treatment of the near-wall region. No-slip condition type grid (left) and

II'model type grid (right).
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it possible to place the first point in the logarithmic layer (in practice;
20 < 2T < 200). The main advantage of this approach is that the number.
of degrees of freedom in the simulation can be reduced greatly; but since.
a part of the dynamics is modeled, it constitutes an additional source of
error.

where () designates a statistical average (associated here with a time average),
and zy the distance of the first point to the wall. The condition (9.19) is
equivalent to adopting the hypothesis that the longitudinal velocity compo-
nent at position zs is in phase with the instantaneous wall shear stress. The
‘mean velocity profile can be obtained by the logarithmic law, and the mean
wall shear stress (7p), is, for a plane channel flow, equal to the driving pres-
sure gradient. This wall model therefore implies that the mean velocity field
verifies the logarithmic law and can be applied only to plane channel flows
for which the value of the driving pressure gradient is known a priori. The
second condition is the impermeability condition, and the third corresponds
to a no-slip condition for the transverse velocity component %y.

9.2.2 A Few Wall Models

In the following, we present the main wall models used for large-eddy simu-
lation. These models all represent an impermeable wall.

Deardorff Model. In the framework of a plane channel simulation with infi
nite Reynolds number, Deardorff [76] proposes using the following conditions
for representing the solid walls: o

Grotzbach Model. Gritzbach [127] proposes extending the Schumann
model to avoid having to know the mean wall shear stress a priori. To do
this, the statistical average () is now associated with a mean on the plane
parallel to the solid wall located at z = zo. Knowing (%1(22)), the mean wall
shear stress (7;,) is computed from the logarithmic law. The friction velocity
© is computed from equation (9.9), i.e.:

277 2— ;
oy — 1 +8’LL1 , (9.16‘

uf (22) = (T1(22))/ur = %log(zzuT/V) +55£01 , (9.22)

82'122 8271:2

_ (918 then (7,), by relation (9.2). This model is more general than Schumann’s,

but it still requires that the mean velocity profile verify the logarithmic law.
Another advantage of Grotzbach’s modification is that it allows variations of
the total mass flux through the channel.

022 or?

where z; is the distance from the first point to the wall and x = 0.4:the
Von Karman constant. The first condition assumes that the average velocit;y'_
profile verifies the logarithmic law and that the second derivatives of theflu
_ tuation u” = T — (u) in the y and z directions are equal. The impermeabilit
condition (9.17) implies that the resolved stresses 13, U3tz and UplUg:are
zero at the wall. This model suffers from a number of defects. Namely; i
shows no dependency as a function of the Reynolds number, and assumes

that the shear-stress near the wall is entirely due to the subgrid scales.

éhifted Correlations Model. Another modification of Schumann’s model
can be made on the basis of the experimental works of Rajagopalan and
Antonia [276]. These two authors observed that the correlation between the
all shear stress and the velocity increases when we consider a relaxation time
between these two evaluations. This phenomenon can be explained by the
@xistence of coherent inclined structures that are responsible for the velocity
ictuations and the wall shear stress. The modified model is expressed:

_ (Tt Ay )
Tp,lB(CC, y) - < (ﬁl(&?, v, Z2)> ) < P) ) (923)

Schumann Model. Schumann [298] has developed a wall model fo pe ‘
forming a plane channel flow simulation at a finite Reynolds number. As he
uses a staggered grid, only the values of the velocity component normal to the -
wall and of two stress tensor components have to be specified. The boundary

conditions proposed are: uz =0 (9.24)
_ [ Talz,y, 22) Tl + A
st = (G ) o) = (Bl ) ) (9:25)

U3 =0 , here the value of the length A; is given by the approximate relation:

2 ﬁ3(:2"3 yazZ)
Tp,23(w, ) = ——

(1 —2z)cot(8%) for 30 < 2z <50—60
As = . (9.26)
(1 — 22> t(13%) for 23 > 60

Re; 23
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Rough Wall Model. Mason and Callen [222] propose a wall model includ-
ing the roughness effects. The three velocity components are specified at the
first computation point by the relations: }

Simplified Boundary Layer Model. Balaras et al. [11] and Cabot [38, 39]
_ propose more sophisticated models based on a system of simplified equations
derived from the boundary layer equations. Between the first grid point and

ur(2,7) afiiad the solid wall, a secondary grid is included on which the following system is
U1z, 9, 29) = cosl <~T~E’——~> In(1+ 22/20) (9.27) . resolved:
ow, 9 ,_ . 8 _ o, 0 oY
Ua(z,y, 22) = sin (i‘ﬂ.;ﬁ) In(1 + 2/%) | (9.28 ET B (@) + Fon (Tnu;) = e + Er <(l/ + usgs)£> , i#Em,

(9.34)

Us(z,y,22) =0 (9.29) . where n is the index corresponding to the direction normal to the wall.

where zg is the roughness thickness of the wall and angle 6 is given byt
relation 6 = arctan(@s(22)/%1(22)). These equations can be used to compiite
the friction velocity u, as a function of the 1nstantaneous velocity componénts
%y and Uy. The instantaneous surface {riction vector u2 is then evaluated as:

1

2 PRIMARY
up = oyl

T

GRID

where v is the vector (Ty(z,y, 22), Ua2(z,y, 22),0) and
1

M v f
The instantaneous wall shear stresses in the z and y directions arefthen
evaluated respectively as [u?| cos§ and |uZ|sin . This model is based on the
hypothesis that the logarithmic distribution is verified locally and instanta-
neously by the velocity field. This becomes even truer as the grid is coarsened'
and the large scale velocity approaches the mean velocity. '

1
= Z§1HQ(1+22/ZQ) v
SECONDARY
GRID

290690000

99-609-60-98-@-
H
¥

®
®
®
®
®
®
®
®

Ejection Model. Another wall model is proposed by Piomelli, Fefziger, '
Fig. 9.3. Representation of the primary and secondary grids.

Moin, and Kim [267] in consideration of the fact that the fast fluid motlons
toward or away from the wall greatly modify the wall shear stress. The 1mpact
of fast fluid pockets on the wall causes the longitudinal and lateral vortex
lines to stretch out, increasing the velocity fluctuations near the wall. The
ejection of fast fluid masses induces the inverse effect, i.e. reduces the wall
shear stress. To represent the correlation between the wall shear stress and
the velocity fluctuations, the authors propose the following condltlons e

Tp,13(2,y) = (1) — Curliz(z + As, ¥, 22) (9 31);

This approach is equivalent to assuming that the inner zone of the bound-
ary layer behaves like a Stokes layer forced by the outer flow. Balaras et al.
propose computing the viscosity vsgs by the simplified mixing length model:

vegs = (52)?Du(2)[S] (0.35)

where 2 is the distance to the wall, & the Von Karman constant, and Dy,(z)
the damplng function:

- (1) o z " -
mastenn) = () e+ ) ,(?'32,)

Dy(z)=(1— exp(—(z+/A+)3)) , (9.36)
us(, y) =0, : (9 33) .

th A* = 25. Cabot proposes the alternate definition:

where C is a constant of the order of unity, (7p).is computed from the
logarithmic law as it is for the Grotzbach model and A, is computed by :

: Vsgs = KuszD(2) (9.37)
the relation (9.26). L in which
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D¢ (z) = (1 — exp(—zuq/Av)) (938 — The instantaneous tangential velocity components at the wall ug(z,y, 22)
Z and ug(z,y, 22) are in phase with the associated instantaneous wall shear
stresses. »
—'The instantaneous velocity profile follows the law:

where us and ug are velocity scales to be determined, and A = 19. The:
simplest choice is us = ug = U, .
When this system is solved, it generates longitudinal and transverse;
locity component distributions at each time step, so that the value of the wal
shear stress can be calculated for solving the Navier—Stokes equations on
main grid. The pressure gradient appears as a source term, because thi
obtained using the relation 8p/9z, = 0. :
The vertical velocity component is obtained from the continuity equation

+ o if ot
u+(z)_{ 2t if 2t <1181 , (9.44)

A(zT)B  otherwise

in which A =8.3 and B = 1/7.

The values of the tangential velocity components can be related to the
corresponding values of the wall shear stress components by integrating the
velocity profile (9.44) over the distance separating the first cell from the wall.
This allows a direct analytical evaluation of the wall shear stress components
from the velocity field:

= If [ (2, y, 22)| < 5% A2/ (1=B), then:

mya) = [ (Grend+ Greno)d L

The boundary conditions applied to the secondary system are:

— On the solid wall: no-slip condition;
— On the upper boundary: Dirichlet condition obtained from the value of th
velocity field computed on the first cell of the main grid.

|7p,i3(2,y)| = 2.y, 20)| : (9.45)
. 22

Model of Murakami et al. Murakami, Mochida, and Hibi [255] developed

a wall model for dealing with the case of the separated flow around a cub

mounted on a flat plate. This model is based on power-law solutions fo the f

mean longitudinal velocity profile of the form:

and otherwise:

) 2
: 1-B us (v\'""P 14+Bv\" B
; Tpﬂ's(m y)l - [TATB (ﬁ) + T (22—) Iui(m>ya Z?)[ )

22

@), (E)” (9.46)

Ue ) vhere zn, is the distance to the wall that corresponds to z* = 11.81. This
Hodel has the advantage of not using average statistical values of the velocity
ifid/or wall shear stresses, which makes it easier to use for inhomogeneous
onfigurations. An impermeability condition is used to specify the value of
he velocity component normal to the wall:

“xe
A

wall, the followmg boundary conditions are used:

z9 n_‘ .
u;(x, = i\Ty Y, A 3 =12 ,

w(e,y) <z2+Az> (e, y, 7t Az), T=0 . (9.47)
Eg(fﬂ,y)"—:O )

L . v 9.3 Case of the Inflow Conditions
where Az is the size of the first cell. The first equation is obtained by assumin, ‘. ‘

that the instantaneous profile also verifies the law (9.40). When the distanc
of the first point from the wall is too large for the convection effects to b
neglected, the relation (9.42) is replaced by:

9:3.1 Required Conditions

Representfng the flow upstream of the computational domain also raises
difficulties when this flow is not fully known deterministically, because the
lack of information introduces sources of error. This situation is encountered
or transitional or turbulent unsteady flows that generally contain a very
arge number of space-time modes. Several boundary condition generation
echniques are used for furnishing information about all the modes it contains
. tp the large-eddy simul' “n computation.

62 - ’ SR :

‘Werner and Wengle Model. In order to be able to process the %amé flow.
as Murakami et al., Werner and Wengle [345] propose a wall mode] based on
the following hypotheses g
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9.3.2 Inflow Condition Generation Techniques Lund et al. [206] developed a variant of this approach for boundary layers,

in which the information at the entrance plane is produced from that con-

Stochastic Recontruction from a Statistical One-Point Description: tained in the computation. There is no longer any need to use a precursor.

When the freestream flow is described statistically (usually the mean velocity
field and the one-point second-order moments), the deterministic information
is irremediably lost. The solution is then to generate instantaneous realiz
tions that are statistically equivalent to the freestream flow, i.e. that ha"
the same statistical moments.

In practice, this is done by superimposing random noises having the sam
statistical moments as the velocity fluctuations, on the mean statistical pr
file. This is expressed:

Semi-deterministic Recontruction. Bonnet et al. [26] propose an inter-
mediate approach between the two previous ones, to recover the two-point
correlations of the inflow with no preliminary computations. The signal at
the inflow plane is decomposed in the form:

u(zo,t) = U(wo) + Us(zo,t) + u'(z0,t) (9.49)

where U(zo) is the mean field, Uc(wo,t) the coherent part of turbulent fluc-
- tuations, and u’(zo, ) the random part of these fluctuations. In practice, this
last part is generated by means of random variables and the coherent part
is provided by a dynamical system with a low number of degrees of freedom
 (like the POD, as seen in the Introduction), or by linear stochastic estimation,
“which gives access to the two-point correlations.

u(zo,t) = U(zg) + u'(m0,t) (9.48).
where the mean field U is given by experiment, theory, or steady compu?
tations, and where the fluctuation u’ is generated from random numbers.
This technique makes it possible to remain in keeping with the energy level
of the fluctuations as well as the one-point correlations (Reynolds stresses):
in the directions of statistical homogeneity of the solution, but does not Te
produce the two-point (and two-time) space-time correlations [183,219, 246).
The information concerning the phase is lost, which can have very harmful
consequences when the consistency of the fluctuations is important, as is ;théf
case for shear flows (mixing layer, jet, boundary layer, and so forth). That
is, the computations performed show the existence of a region in the compi-
tational domain in which the solution regenerates the space-time consistency.:
specific to the Navier-Stokes equations [63]. The solution is not usable in this
~ region, which can cover a large part? of the computational domain, and this
entails an excess cost for the simulation. Also, it appears that this techmque
prevents controlling precisely the dynamics of the solution, in the sense: thab
it is very difficult to reproduce a particular solution for a given geometry

Deterministic Computation. One way of minimizing the errors is to per—:
form a simulation of the freestream flow [103, 339}, called a precursor simula
tion, with a degree of resolution equivalent to that desired for the final sim-
ulation. This technique almost completely eliminates the errors encountered:
before, and offers very good results. On the other hand, it is hardly practical
in the general case because it requires reproducing the entire history of the
flow which, for complex configurations, implies very high computation costs.
Another problem stemming from this approach is that of causality: since the.
precursor is computed separately, no feedback of information from the second
simulation is possible. This is a one-way coupling between two simulations’
that can become problematic when a signal (acoustic wave, for example) is.
emitted by the second.

4 Numerical experiments show that this region can cover more than 50 % of the .
total number of simulation points.




10. Implementation

This chapter is devoted to the practical details of implementing the large-
eddy simulation technique. The following are described:

— Cutoff length computation procedures for an arbitrary grid;
— Discrete test filters used for computing the subgrid models or in a pre-

- Computing the Structure Function model on an arbitrary grid.

10.1 Filter Identification. Computing the Cutoff Length

The theoretical developments of the previous chapters have 1dent1ﬁed several
lters of different origins:

¥

1. Analytical filter, represented by a convolution product. This is the filter
v, used for expressing the filtered Navier-Stokes equations.

;2. Filter associated with a given computational grid. No frequency higher
than the Nyquist frequency associated with this grid can be represented
.in the simulation.

Filter induced by the numerical scheme. The error committed by approxi-
- mating the partial derivative operators by discrete operators modifies the
computed solution mainly the high-frequency modes.

.. Filter associated with the subgrid model, which acts like a control process
on the computed solution.

"The computed solution is the result of these four filtering processes consti-
utmg the simulation effective filter. When performing a computation, then,

he question arises as to what the effective filter is, that governs the dynamlcs
{ the numerical solution, in order to determine the characteristic cutoff
eéngth. This length is needed for several reasons.

In order to be able to determine the physically and numerically well-
resolved scale beyond which we will be able to start using the results for
analysis.

In order to be able to usé the subgrid models like the subgrid viscosity
models that use this ¢ T length explicitly.
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While the filters mentioned above are definable theoretically, they are
almost never quantifiable in practice. This is particularly true of the filter
associated with the numerical schemes used. In face of this uncertainty, prac~
titioners have one of two positions they can adopt:

1. Arrange it so that one of the four filters becomes predominant over the
others and is controllable. The effective filter is then known. This is done
in practice by using a pre-filtering technique.
Normally, this is done by ensuring the dominance of the analytical filter,
which allows us strict control of the form of the filter and of its cut:
off length, so that we can get the most out of the theoretical analyses
and thereby minimize the relative uncertainty concerning the nature, of
the computed solution. In the numerical solution, an analytical filter i
then applied here to each computed term. In order for this filter to be
dominant, its cutoff length must be large compared with the other three;
Theoretically, this analytical filter should be a convolution filter which,
keep the computation cost within acceptable limits, can only be apphed
for simulations performed in the spectral spacel. For the simulations pe
formed in the physical space, discrete filters are used, based on weighted
averages with compact support. These operators enter into the catego
of explicit discrete filters, which are discussed in the following section.:
We may point out here that the methods based on implicit diffusion
with no physical subgrid model can be re-interpreted as a pre-filtering
method, in which case it is the numerical filter that is dominant. We can
see the major problem of this approach looming here: the filter associated
with a numerical method is often unknown and is highly dependent on
the simulation parameters (grid, boundary conditions, regularity of ‘the.
solution, and so forth). This approach is therefore an empirical one that
offers little in the way of an a priori guarantee of the quality of the result
It does, however, have the advantage of minimizing the computatlo :
costs because we are then limited to solving the Navier—Stokes equations
without implanting any subgrid model or explicit discrete filter. - i

. Considering that the effective filter is associated with the computation:
grid. This position, which can be qualified as minimalist on the theoretical
level, is based on the intuitive idea that the frequency cutoff associated
with a fixed computational grid is unavoidable and that this ﬁlter is:
therefore still present. The problem then consists in determlmng ‘the
cutoff length associated with the grid at each point, in order to be. able ,
to use the subgrid models.
In the case of a Cartesian grid, we take the filtering cell itself as Carte31a
The cutoff length A is evaluated locally as follows: .

— For uniform grid, the characteristic filtering length in each dlrectlon is
taken equal to the mesh size in this same direction: :

1 The convolution product is then reduced to a éimple product of two arrays.
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Zi = Amz (10.1)

The cutoff length is then evaluated by means of one of the formulas
presented in Chap. 5.

— For a variable mesh size grid, the cutoff length in the ith direction of
the grid point of index [ is computed as:

Aile = (@ilie1 — zili-1)/2 (10.2)

The cutoff length is then computed locally according to the results of
Chap. 5.

In the case of a curv1hnear structured grid, two options are possible

depending on the way the partial derivative operators are constructed:

- If the method is of the finite volume type in the sense of Vinokur
[335], i.e. if the control volumes are defined directly on the grid in the
physical space and their topologies are described by the volume of the
control cells, of the surface area, and of the normal to each of their
facets, the filter cutoff length can be computed at each point either by
takmg it equal to the cube root of the control volume to which the
point considered belongs, or by using what Bardina et al. propose (see
Sect. 5.2.2).

— If the method is of the finite differences type in the Vinokur sense
[335], i.e. if the partial derivative operators are computed on a uniform
Cartesian grid after a change of variables whose Jacobian is denoted J,
then the cutoff length can be evaluated at the point of index (I,m,n)
either by Bardina’s method or by the relation:

Apmin = (Jymn AEARAQY® (10.3)

where A¢, An and A( are the grid steps in the reference space.
In the case of an unstructured grid, we use the same evaluations as for

a structured curvilinear grid with a finite volume type method, in the
sense given above.

10.2 Explicit Discrete Filters

Several techniques and subgrid models described in the previous chapters use
'a test ﬁlter For reference, these are the:

Pre—ﬁltermg technique;

Scale similarity models;

Mixed Scale Model;

Dynamic constant adJustment procedures;

Models incorporating a structural sensor;

Accentuation procedure.
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The corresponding theoretical developments all assume that we are able
to apply an analytical filter in the simulation. This operation comes dow:
to a product of two arrays in the spectral space, which is a simple operatlon
of little cost, and all the analytical filters whose transfer function is known
explicitly can be used. The problem is very different, though, when we con:

N
Gle)= > afFae (10.7)
{=—N .

The real and imaginary parts of this transfer function are:

sider the simulations performed in the physical space on bounded domains: R N
applying a convolution filter becomes very costly and non-local filters cann R(G(K)) = ap + Z(az +a-;)cos(klAz)
be employed. In order to be able to use the models and techniques mentioned =1

above, we have to use discrete filters with compact support in the physic
space. These are described in the rest of this section. These discrete filters
are defined as linear combinations of the values at points neighboring the ore
where the filtered quantity is computed {204,257, 289, 332].

The weighting coefficients of these linear combinations can be computed
in several ways, which are described in the following. We first present the
one-dimensional case and then that of the Cartesian grids of more than one

N
(G(k) = > (a1 — a_y) sin(klAz)
=1

The continuous differential operator can be associated with the discrete
filter (10.4). To do this, we introduce the Taylor expansion of the variable ¢
about the point i:

dimension, and lastly extend this to arbitrary grids. > (+nAz) [0 '
The discrete approximation of the convolution filters is then discussed Pitn = Z i \a/). (10.8)
1=0 i
10.2.1 Uniform One-Dimensional Grid Case By substituting in relation (10.4), we get:
We restrict ourselves here to the case of a uniform one-dimensional gr:' (14 ia* Al _61 4 (10.9)
mesh size Az. The abscissa of the grid point of index 7 is denoted 2;, such £ l 9zt | 71 :

that we can say z;11 — 2; = Az. The filtered value of the variable ¢ at

grid point of index ¢ is defined by the relation: in which

N

b= >, wmin

1
5 3
I=—N n=—N
We note that these filters belong to the class of elliptic filters as defined in
Sect. 2.1.3. In practice, the filters most used are the two following three-point
symmetrical filters:

where N is the radius of the discrete filter stencil. The filter is said 0 be
symmetrical if a; = a_; VI and anti-symmetrical if ag = 0 and @, = —a._ ;Vl
0. The constant preservation property is represented by the following : relamon

N 1 1
Z a = 1 ap = 2 y -1 = a1 = Z )
I=—N 2 1
ap = 5,01 =01 = =
A discrete filter defined by the relation (10.4) is associated with the 3 6

tinmous convolution kernel: b Vasilyev et al. [332] have defined nonsymmetric filters, which have a large

N umber of vanishing moments?. These filters are presented in Table 10.1.
Gz —y) = Z ab(z —y+14z) , Linearly constrained filters can also be defined, which satisfy additional
l=—N onstraints.

where § is a Dirac function. Simple computations show that the as

transfer function @(k) is of the form: ‘These filters are necessary to obtain high-order commuting discrete filters (see

4 Sect. 2.2.2).

P



‘yuemerduur 0y 91191 1500 ey siojeiado augep 09 s[qissod 91 Juryepy . , xon ued uonpeoridde siyy, eoeds jo woroemp Yore ur 189y [BUOISUSWIP-0UO ©

. : K g ¢ 3
JO saRjUBADE BY) SEY ST, '9POU IS JO SIOqUSIEU dYeIpaTIT aryy v Mﬁ% E%w L 9550 TRHOISHOMIPIIIL o) 0) puojxe om ‘Spus wersoe) 104

£uo Juisn 310ddns joeduwod ym s1yjy SpeIk IOpIO Puodes 81} 0} 10)eId0

OSE)) [BUOISUSWIPIYMIN 9} 0 UOISUNIXH Z'Z'01
oY) Suryrurry “¢j3us| JFojno porisep ot V' pue jue)suod sa1yisod e s1 0 o1oyM

; P
(gron) C oA PP =9 = (gron). R
. :s107e10d :
o1dI[[e IOPI0-PU0ds FUIZIOIISIP £q PosT UAYJO 1SOU ST poyjewr siyy ‘eorjorad
U] "107e10d0 [RIJUSISHIP ST} [ITA POJRIDOSSR SUISYDS 9J2I0SIP 81} JO SJUSID0I
oY) ULy} oIe SopOU FULIOqUSPU 9YY JO SJUBDYe0d FunySem o], ‘1orersdo
[BIJUSISYIP USSOYD & SUIZIJOIOSIP Aq I94[1 990I0SIP oY) Suruyep ut 315109 SpLag
pamjonrisun oy sqeoridde pue [erouss L[s1e[duron st yeys) poyjet Istjouy
"A[AO[s ATeA SJUSIOLIA0D DLIISTL
9S0YM SpLIZ I0j ATUO pesn aq PIoys 3 og “10rerado [eTIURISYIP Jusreamba &
10 woRouNy IaysUeI) I3[ SJ0IISIP Y} JO [0IJU0D OU SMO[[e Jnq Juswefdur 0)
Ases L1oa st ‘ooeds soustefor € Ul 109y oty Surfdde o3 juoreambe st yorym
‘POYIRU SIYT, "SPUBIOLJA0D ILIJOUL ) JO SUOLJBLIRA 9Y} JO JUNOIDR OU Y8} PUR
PLIS wersejie)) WIONUN oY) Ul pauyep s1y]y o Aordurs 03 st poyjew ouo
‘(oz1s ysow s[qerrea yym spis URISHIE)) 10) SPIIT IRSUIIAIND POINJONI)S IO,

F Aty 'S8 POjen[eAds MOU ST (IFUL] FOIND
10Y[J 9J0IISIP SY ], “IOUINT 0ATM ST} 9q Py 907 *7/T onJea a1y see} UOMOUN]
JoJSURI) 81} YOI IOF SUO [} I0F SE ‘I93[Y 939I0SIP OY YL PORIOOSSE JOqUINT
oAem U} SUYSP pUR WONOUNY IOJSUeI} PIJRIOOSSE ) UM A[JO0IIP SIOM ST
PARUIBY[E OUQ) "0IOZ ST JUSTUOUL IDPIO-PUOIAS SSOYM SIOY[Y I0] JUSTOLJOUI ST
SI99[Y 9J9IDSIP 8Y3 JO SYTUL] OIYSIIBIORIRYD OTf) Suryenyeas jo poyjpew Sy,

1Y (7/1°2/1°%/1) ot 10§ B9 A pue 1097y (9/1 ¢/ ‘9/1) o3 10§ Z7g o1e
| 9A0QE pauOTjUSU 81291y jurod-0aIy} om) 9y Jo syj3ue] OT)SLIDJORIRYD aY T,

3P(3)D23 - eV =Py
wa_ [ x

. :[£8Z ‘F0T) 1991 uorm[0ATIOD pPajeIoOSSE 93 JO UOIYEIASD PIepUR)S OT[}

Sunnduod £q peure}qo st yjSuey ST} JO eInsesT U0 193]y 0aryisod sjruyep ©

10 ;.;Epo:x 9q 0} 'Y ‘Py7 Pajousp ‘Ie[y 990I0SIP 9Y3 JO Y3Sus] OIJSLI9Y0RIRYD
1) .,mgsvwooa orureudp A[I-ouruLIon) oY) UI SB [ONS ‘Sesn UIR}IOD IO

, : *o0rds [eIj00ds Ul UOTYRULIONUI B} JO HOIJRZI[RI0] 1899

Ul Juiynse1 ‘oYY oty jo esuodser reryoeds 19139 © INSUS SIINY ISOYJ,

.Rmmnmwm_ pasodoid useq aavY ‘uorouny JejsUERI) pegedie) oy st ()% aroym

§

SI991J UOLN[OAUO)) *9sk) [RISUO) 9} 0 UOISUSIXG £'Z°01

"PIoY 813 Jo joadse

[BUOISTDWIP-5911} 81} JO SISATeIre 10930( @ MO[[® PUe ‘Uorjewruuns Aq pojoniys
~HOO SIDYY Y3 818 URY) SOPOUL SSOID B[} OF SAIYISUSS SIOUI dIe SIONY Yong —
“A[reryuonbes saurmor JurIey[y feuors )
-UewIp-suo pejusurojdurt Aises a1y [[ed 03 s[qissod 91 sexjewr yoroidde siyy, —

o c
Oron * w({rp-(oke) [+ (iro - ok /
‘SUOSEAT OM} JI0J ‘POSTL UOYJO ISOUI ST R} WOHOTLIISUOD jonpoad o1y} ST 91 he ‘wy /L e ay/u

‘oorjoead Uy “sures oyj jou ore srojerado [BTUBISYID Jus[eAInbe pue suorjouny
IOJSUBI} 11971 YR} 9SUSS oY} UL SUIeS 8Y} JOU 818 I9)[Ij [PUOISUSWUIP-UO JUILS

o} WOy senbIuyey om) 8ot} £q PaONIISU0D SI09[1f [RUOISUSIIPI| NI s,

- feuon
ouny 9y dzrItUI 03 pejndwiod sIe SJUSIDIFE0d 9SOYM ‘sIaYy peziuuiyd()

(r101) - w][=w»

ot/1- ¥/1  8/¢ w/1 o91/1-
9T/ ¥/ 8/e w/e 91/1
91/1- ﬂ} 8/¢- ¥/1 91/g1

€

3onpoid ® Jo uriof €
€

8/1- 8/ 8/s  8/1 N
4

!

N

9y} soxe} 101y Sunnser oyy ‘Afreryusnbos peydde Jy eveds JO UoI308Ip 132 9}
UL 193]y [BUOISUSWIP-0UO oY} ') pue 92eds oY) JO UOISUSULD Y} ST U SISYM
8/1  8/¢- 8/e  8/L

v/t e/t /1

14] £p tp Ip 0p I-p [4t's]

=
u
(gTor) “ T

‘UOTEIUINS @ S8 AT[edI[OqUIAS U9})LIM ST 19 [RUOISUOUX

, sjuowowW Surysruea
-Iprynur oYy ‘Ajsnosuejmuuts uoyp “Arenusnbos 1o Asnooueymuns paurzoyrad

JO ToquMU 9Y3 st A "SIOYY [ROLPPUIUASUOU 8J2I0SIP JO SJUSOJA0)) *T*OT o[qer,

ecg SIOYILY Y2108 OAXT 701 uoryejusursrduy (| 4t



254 10. Implementation 10.3 Implementation of the Structure Function Model 255

— Making a multiblock and/or multidomain technique easier to use, and theA

When the grid is non-uniform or when Az # r, an interpolation technique
boundary conditions easier to process.

has to be used to compute the integral. Rather than use a linear interpola-
tion, it is recommended that the interpolation method be based on physical
knowledge. So in the isotropic homogeneous turbulence case, when we see
that we have:

The fast-decay convolution filters (box or Gaussian) can thus be approxi-
mated by discretizing the differential operators associated with them. These
operators are described in Sect. 6.1.1. The sharp cutoff filter, which is not of
compact support, is used only when fast Fourier transforms are usable, which

Fy(x,r,t) = 4.82Ko(er)?®
implies that the grid step is constant and the data perlodlc

Fy(x,7,t) = 4.82K¢(er')¥/®

10.2.4 High-Order Elliptic Filters we deduce the proportionality relation:

Convolution filters are non-local, and may sometimes be difficult to use to--
gether with complex numerical algorithms (multidomain topology, unstruc-:
tured grid, ...). An alternative, that can be implemented with all numeric
methods, consists in high-order elliptic filters [252]. it

The filtered variable is computed as being the solution of the general
clliptic equation:

Fo(x,m, ) = Byl ') (5 )2/d . (10.20)

Relation (10.19) is thus generalized to the form:

n r 2/3 -
Fy(x,rt) = ;Zlu(x)—u(quA)l (E) : (10.21)

i=1

2\m T .
[-(V)™ +ald¢ =g, m=21 where n is the number of neighboring points retained for computing the

structure function and A; the distance of the ith point to the point where
this function is evaluated.

It has already been said that the Structure Function model in its original
form exhibits defects similar to those of the Smagorinsky model because of
the uncertainty relation that prevents any good frequency localization of
‘the information. One way of at least partly remedying this program is to
look for the structure function evaluation information only in the directions
of statistical homogeneity of the solution. This is done by evaluating the
structure function only from points located in the directions of periodicity of
the solution. This way, the mean gradient of the solution is not taken into
account in the evaluation of the subgrid viscosity. We again find here an idea
similar to the one on which the splitting technique is based, in Sect. 5.3.2.

High values of m make it possible to obtain very sharp filters in:the
spectral space. Mullen and Fischer show that the solution of equation (10416)
can be approximated through numerical solution of a much simpler probleé:
namely the Poisson equation i

V=

10.3 Implementation of the Structure Function Mod‘é
In order to use the subgrid viscosity model based on the second—order-‘ I
ture function of the velocity (see p. 95), we have to establish a dise te
approximation of the operator: ¥

F(x,r,t) = / [u(x,t) —u(x +x/, t)]2 d3x’'
ixj=r

In practice, this integration is approximated as a sum of the contr )
of the nieighboring points. In the case of uniform Cartesian grid with A
the structure function is evaluated at the index point (i, j, k) by the relatlo

1
B(Az, )i = ¢ (i = o ngel® + [0 — wimgal® o 7
g — Wil + 5k — i1kl

Wi e — W g ]” + [0k — Wi

+ +




11. Examples of Applications

This chapter gives a few examples of large-eddy simulation applications that
are representative of their accomplishments in the sense that they correspond
either to flows that are very frequently treated or to configurations that
stretch the technique of today to its limits.

11.1 Homogeneous Turbulence

'11.1.1 Isotropic Homogeneous Turbulence

Problem Description. Isotropic homogeneous turbulence is the simplest
turbulent flow on which subgrid models can be validated. The physical de-
scription of this flow is precisely the one on which the very great majority
of these models are constructed. Moreover, the flow’s statistical homogeneity
makes it possible to use periodicity conditions for the computation, and high-
accuracy numerical methods: pseudo-spectral methods can be used, optimally
reducing the effect of the numerical error on the solution.

Because of the great simplicity of this flow, most subgrid models yield very
satisfactory results in terms of the statistical moments of the velocity field
and the integral scales, which reduces the discriminatory range of this test
case. It is nonetheless widely used for fundamental type studies of turbulence
and modeling.

Two types of such flow are considered:

— Freely decaying isotropic homogeneous turbulence in which the energy is
initially distributed in a narrow spectral band and then, as the energy
- cascade sets in, is directed toward the small scales and finally dissipated at
the cutoff by the subgrid model. During the time the cascade is setting in,
the kinetic energy remains constant, and later declines. The computation
can be validated by comparison with decay laws developed by analytical
theories (see [189]) or by comparison with experimental data.
= Sustained isotropic homogeneous turbulence, in which total dissipation of
" the kinetic energy is prevented by injecting energy at each time step, for
" example by maintaining a constant energy level in the wave vectors of a
given norm. After a transitory phase, an equilibrium solution is established
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including an inertial range. The computation is validated by comparison
with theoretical or experimental data concerning the inertial region, and
quantities associated with the large scales. )

A few Realizations. The first large-eddy simulations of the free-decaying
type were performed at the end of the seventies and early eighties [61] with
resolutions of the order of 16% and 32%. Self-similar solutions could not be
obtained with these resolutions because the integral scale becomes larger
than the computational domain. However, the comparison with filtered ex-
perimental data turns out to be satisfactory [13]. More recent simulations
(for example [191,235]) performed with different subgrid models on grids-of
1283 points have yielded data in agreement analytical theories for the kinetic
energy decay. Higher-resolution simulations have been performed. ‘
In the sustained case, Chasnov [54] is an example of achieving self-similar
solutions in agreement with theory for resolutions of 64* and 1282, though
with an over-evaluation of the Kolmogorov constant. More recently, Fureby
et al. [106] have tested six subgrid models and a case of implicit numerical
diffusion on a 323 grid. The conclusions of this work are that the different
realizations, including the one based on artificial dissipation, are nearly in-
discernable in terms of the quantities linked to the resolved field, and are”
good agreement with data yielded by a direct numerical simulation. I~
Though isotropic homogeneous turbulence is statistically the simplest ca

of turbulent flow, it possesses a complex dynamics resulting from the interac-
tions of very many elongated vortex structures called “worms”. These stru
tures are illustrated in Fig. 11.1, which comes from a large-eddy simulation [
frecly decaying isotropic homogeneous turbulence on a 128° grid. Obtaining
_good results therefore implies that the simulation is capable of reﬁecj;ih
the dynamics of these structures correctly. We clearly see here the diffefeiibg
with the RANS approach (see Chap. 1), for which isotropic homogeneotis
turbulence is a zero-dimension problem: for the large-eddy simulation, g‘thisy
problem is fully three-dimensional and reveals all the aspects of this tech‘n_,iz
(modeling errors, filter competition, and so forth). .

6 6

Fig. 11.1. Isotropic homogeneous turbulence. Instantaneous view of vortices (illus-
- trated by an iso-value surface of the vorticity). With the permission of E. Garnier,
ONERA.

turbulence are confirmed, i.e. a reduction in the dissipation of the kinetic

energy.

- Homgggeneous turbulence subjected to pure strain: still a 323 grid, with
results in good agreement with experimental data concerning the turbulent
intensity, using the Smagorinsky model and mixed Smagorinsky-Bardina
model (6.118). The best results are obtained with the latter. '

— Homogeneous turbulence subjected to a deformation and rotation: simu-
* lations are performed on a 323 grid with the two previously mentioned
models. No validation is presented, for lack of reference data.

11.1.2 Anisotropic Homogeneous Turbulence

Anisotropic homogeneous turbulence allows a better analysis of the subgrid
models because the dynamics is more complex, while optimum numetical
methods are retained. So it can be expected that this type of flow offers more
discriminatory test cases for the subgrid models than do isotropic flowsf::
Bardina et al. [13] performed a set of simulations corresponding to the
following three cases in the early eighties: ot

Simulations of homogeneous turbulence subjected to sequential shearing
have also been performed by Dang (73] on a 162 grid with several effec-
tive viscosity models, yielding good results concerning the prediction of the
anisotropy of the resolved scales. Similar computations have also been per-
formed by Aupoix [6].

el
— Homogeneous turbulence subjected to a solid-body rotation. Good agree:
ment is measured with experimental data using a de-filtering technique, on
a 323 grid with a Smagorinsky model (4.90). The effects ¢ >tation on the




- in Fig. 11.2.
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11.2 Flows Possessing a Direction of Inhomogeneity

T‘hese flows represent the next level of complexity. The presence of a direction
of inhomogeneity prompts the use of lower-order numerical methods, at least
for this inhomogeneity, and boundary conditions. Also, more complex phys

ical mechanisms are at play that can exceed the possibilities of the subgrid :
models.

11.2.1 Time-Evolving Plane Channel

Problem Description. The time-evolving plane channel flow is a flow be-
tween two infinite parallel flat plates having the same velocity. The time
character is due to the fact that we consider the velocity field as being periodic
in both directions parallel to the plates. Since the pressure is not periodic,
a forcing term corresponding to the mean pressure gradient is added in the
form of a source term in the momentum equations. The flow is characterized
by the fluid viscosity, the distance between the plates, and the finid velocity.
This case study configuration is used for investigating the properties of a
turbulent flow in the presence of solid walls, and is a widely used test cage.
Turbulence is generated within the boundary layers that develop along each.
solid wall (see Sect. 9.2.1). It is the driving mechanism here, which must
imperatively be simulated with accuracy to obtain reliable results. To do §
the grid has to be refined near the surfaces, which raises numerical problein
with respect to the homogeneous turbulence. Moreover, the subgrid modé
must be able to preserve these driving mechanisms. !
The flow topology is illustrated in the iso-value surface plot of the vorticity

A Few Realizations. There are dozens of numerical realizations of planef,'
channel flows. The first are from Deardorff [76] in 1970. The first landmark re-
sults obtained by solving the dynamics of the near-wall region are due to My in

Fig. 11.2. Plane channel flow. Iso-surface of instantaneous vorticity. With the
permission of E. Montreuil, ONERA. e 2
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Table 11.1. Characteristics of time-evolving plane channel flow computations.

Ref. [245] [264] [208] [171]

Rec 13800 47100 ~ 1,5.10° 1,09.105

Lz x Ly x Lz 2 X 7 X 2 Sr/2xw/2x2 4%X2x1 2r xwf2 x 2
Nz x Nyx Nz 64x64x128 64 x 81 x 80 64 x 32 x 32 22.106+H
SGS Model Sc Dyn Sc Dyn

Wall - . - MSc -

O(Az®) S/2 ) S/T 2 S/Gsp
o(At?) 2 3 2 3

and Kim [245] in 1982. The characteristics of the computations presented in
the four reference works (171, 245,264, 298] are reported in Table 11.1. These
computations are representative of the various techniques employed by most
authors. The Table summarizes the following information:

— The Reynolds number Re, referenced to the channel mid-height and mean
velocity at the center of the channel.

— The dimensions of the computational domain expressed as a function of the
channel mid-height. The domain dimensions must be greater than those of
the driving mechanisms in the near-wall region (see Sect. 9.2.1).

— The number of grid points. Simulations generally include few points be-
cause the solution is bi-periodical. The computations at high Reynolds
number without wall model presented [171] use a hierarchic grid technique
with nine grid levels (symbol “4-H”).

~ — The subgrid model used (“Sc”is the Schumann subgrid viscosity model

(5.70) and “Dyn”the dynamic Smagorinsky model (4.137)). Only two mod-
els are used in the computations presented, but most existing models have
been applied to this configuration.

— The treatment of the solid walls (“-”is the no-slip condition, “MSc”the

Schumann wall model (9.19) to (9.21)). A single computation based on a

wall model is presented, knowing that nearly all the models mentioned in

Chap. 9 have been used for dealing with this flow.

— The accuracy of the space discretization schemes. Since the directions of
statistical homogeneity are linked to directions of periodicity in the solu-
tion, pseudo-spectral methods are often used for processing them. This is
true of all the computations presented, identified by an “S”, except for ref-
erence [298], which presents a second-order accurate finite volume method.
In the normal direction, three cases are presented here: use of second-order

. accurate schemes (identified by a “2”), of a Chebyshev method (“T”), and

- a Galerkin method based on B-splines (“Gsp”). The effect of the numerical

. error on the solution can be reduced by using higher-order methods, which

are consequently recommended by many authors.
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— The accuracy of the time integration. The convection term is usually treated
explicitly (Runge-Kutta or Adams-Bashforth scheme) and the diffusion
terms implicitly (Crank-Nicolson or second-order backward Euler scheme).
Nearly all the computations are performed with second- or third-order
accuracy.

The results obtained on this configuration are usually in good agreement
with experimental data, and especially as concerns the first-order (mean field)
and second-order (Reynolds stresses) statistical moments. Examples of data
for these quantities are shown in Figs. 11.3 and 11.4. The mean longitudinal
velocity profile is compared here with a theoretical turbulent boundary layer
solution, and very good agreement with it is observed. It should be noted
that the logarithmic region is relatively small, which is due to the fact that
the Reynolds number for the computation is low (Re, = 180). The profiles of
the three main Reynolds stresses are compared with those obtained by direct
numerical simulation on a grid including about twenty times more degrees
of freedom. Although these stresses are calculated only from the resolved
field, such that the contribution of the subgrid scales is not included, we
observe that the agreement with the reference solution is very satisfactory.
This illustrates the fact that data obtained by large-eddy simulation can be"
used directly in practice without recourse to a de-filtering technique. In the
present case, the very good quality of the results can be explained by the fact
that a large part of the kinetic energy of the exact solution is contained 1n_"
the resolved scales. :

ol v v 1 by P R S
-1 -0.75 -0.5 -0.25 0
z

" Fig. 11.4. Plane channel flow. Profiles of solved Reynolds stresses with respect
to the friction velocity, compared with data from a direct numerical simulation
computation. Dot symbols: direct numerical simulation. Lines: LES computation.
With the permission of E. Montreuil, ONERA.

The quality of the results is essentially due to the resolution of the dy-
namics in the near-wall region (2 < 100). This implies that, if a wall model
is not used, the computational grid is fine enough to represent the dynamics
of the vortex structures present, and that the subgrid models employed do
not alter this dynamics. Because of the necessary volumes of the grids, this
resolution constraint limits the possible Reynolds number. The largest friction
Reynolds number achieved to date, using a hierarchic grid generation method,
is Re; = 4000 [171]. The standard subgrid viscosity models (Smagorinsky,
Structure Function, and so forth) are generally too dissipative and have to
be used with caution (modification of the value of the model constant, wall
damping function, and so forth) {292]. Results concerning the transition to
turbulence in the configuration are available in reference [271]. Lastly, the
results obtained for this low have been found to be very sensitive to numerical
errors induced either by the discrete numerical scheme or by the continuous
form of the convection term [172,257].

20
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11.2.2 Other Flows

- L R | L . AR | ;
9 107 10

Other examples of shear flows treated in the framework of the time-evolution

. . approximation can be found for:
Fig. 11.3. Plane channel flow. Mean longitudinal velocity profile referenced t

the friction velocity, compared with a theoxetical turbulent boundary layer pr
file. Small circle symbols: LES computation. Lines: theoretical proﬁle Wlth the
permission of E. Montreuil, ONERA.

— plane mixing layer, in {310];
— boundary layers, in [167 221,223,243];
— round jet, in [96]; .~

@
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= plane wake, in [124];
— rotating plane channel, in [176, 177,240,241, 268, 324];
— plane jet, in [182].

As in the case of the plane channel flows described above, periodicity
conditions are used in the directions of statistical homogeneity. The numerical
methods are generally dedicated to the particular configuration being treated
(with spectral methods used in certain directions) and are therefore optimum;
A forcing term is added in the momentum equations to take the driving
pressure gradient into account or avoid diffusion of the base profile.

Transitional flows are more sensitive to the subgrid model and to the
numerical errors, as an inhibition of the transition or re-laminarization of the
flow are possible. This is more especially true of flows (for example bound:
ary layers) for which there exists a critical Reynolds number: the effective’
Reynolds number of the simulation must remain above the threshold within'
which the flow is laminar.

It should be noted that the boundary conditions in the inhomogene
direction raises little difficulty for the flow configurations mentioned above.
These are either solid walls that are easily included numerically (excep:f_:i :
the procedure of including the dynamics), or outflow conditions in reg:i'onsy'
where the flow is potential. In the latter case, the computation domain
boundary is generally pushed back as far as possible from the region being
studied, which reduces any spurious effects. ’

The types of results obtained, and their quality, are comparable to what
has already been presented for the plane channel flow.

' 11.3 Flows Having at Most One Direction
of Homogeneity

This type of flow introduces several additional difficulties compared” with
the previous cases. The limited number or total absence of directions o
homogeneity makes it necessary in practice to use numerical methods of
moderate order of accuracy (generally two, rarely more than four), and highly
anisotropic grids. The effect of the numerical error will therefore be high!
Moreover, most of these flows are in spatial expansion and the problems:
related to the definition of the inflow and outfAow conditions then a,i)pear.
Lastly, the flow dynamics becomes very complex, which a,ccentuatesfthe“
modeling problems.

11.3.1 Round Jet

Problem Description. The example of the round jet flow in spatial éxpan-
sion is representative of the category of free shear flows in spatial 'e;’c’pa,nsion. b
The case is restricted here to an isothermal, isochoric round jet flow piped
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into a uniform, steady outer flow in a direction
Two main regions can be identified:

parallel to that of the jet.

— First, we find a region at the pipe exit where the flow consists of a laminar
coré called a potential cone, which is surrounded by an annular mixing
layer. The mixing layer is created by the inflectional instability associated
with the deficit velocity profile of the boundary layer on the wall of the
circular pipe. As the mixing layer thickens while moving away from the
pipe exit section, it reduces the diameter of the potential cone and also -
induces an increase in the jet diameter.

~ After the potential cone disappears, we have a “pure jet” region where the
flow gradually reaches a regime corresponding to a similarity solution.

The first region can be decomposed into two: a “transition”region where
the mixing layer has not yet reached its self-similar regime, and the similarity
region where it has. This organization is illustrated in Figs. 11.5 and 11.6,
representing respectively the iso-surfaces of vorticity and pressure obtained
from large-eddy simulation results. The vorticity field very clearly shows the
transition of the annular mixing layer. The topology of the pressure field
shows the existence of coherent structures.

Experimental and numerical analyses have shown that this flow is strongly
dependent on many parameters, which makes it highly discriminatory.

A Few Realizations. There are far fewer round jet simulations in the liter-
ature than there are plane channel flows. This is mainly due to the increased
difficulty. Four of these realizations are described in the following, with their
characteristics listed in Table 11.2, which gives: :

ig. 11.5. Round jet. Iso-suiface of instantaneous vorticity (LES computation).

‘Exit plane in black. With the permission of P, Comte, LEGI.
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— the overall order of accuracy of accuracy in space of the numerical method.
The symbol -+up3 indicates that a third-order accurate upwind scheme is
used for the convection term to ensure computation stability. The compu-
tations presented in [37] rely on spectral schemes in the directions normal

*  {o that of the jet.

— the time accuracy of the method employed.

Examples of results obtained on this configuration are compared with
experimental data in Figs. 11.7 to 11.11. The axial evolution of the location
of the point where the mean velocity is equal to half the maximum veloc-
ity is represented in Fig. 11.7. This quantity, which gives some indication
concerning the development of the annular mixing layer, remains constant
during the first phases of evolution of the jet, which confirms the existence
of a potential cone. After the cone disappears, this quantity increases, which
indicates the beginning of the pure jet region. It is observed that the length
of the potential cone predicted by the computation is less than is observed
experimentally. Similar conclusions can be drawn from the axial evolution of
the average longitudinal velocity, which is presented in Fig. 11.8. The too-
rapid expansion of the pure jet region is accompanied by a strong decay
of the mean velocity!. These symptoms are observed on all known large-
eddy simulation computations on this configuration and still have no pre-
cise explanation. Several hypotheses have been formulated concerning the

Fig. 11.6. Round jet. Iso-surface of instantaneous vorticity (LES computation
With the permission of P. Comte, LEGI.

— the Reynolds number Rep referenced to the initial jet diameter D and th
maximum of the mean initial velocity profile; '

— the computational domain dimensions referenced to the length D;

— the number of grid points. All the grids used by the authors mentioned’
Cartesian. The symbol H designates the use of embedded grids (four
levels for [260]). ;

1 This results from the conservation of the mass.

~ — the subgrid model (“MSM”standing for the Mixed Scale Model (4.116); 2 ' l L
“Dyn”the dynamic model (4.137); “FSF”the filtered Structure Funcigidn ’ ]
model (4.225)). It should be noted that, for all the known realizations of - e
this flow, only the subgrid viscosity models have been used. L 157 ]
— the freestream condition generation mode. The symbol U + b indicates
that the non- steady inflow condition was generated by superimposing an &
average steady profile and a random noise, as indicated in Sect. 9.3.2.. ' > ]
5
Table 11.2. Characteristics of the round jet computations. TAU3
o Djeridane (free)
Ref. [291] [260] [37] 05 - = Djeridane (co-current) T
T LT T admda L T linear interpolations
Rep - 21000 50.10 21000 ! (or linear extrapolations)
Lx x Ly x Lz 10 x 11 x 11 12x8x%x8 10 x 11 x 11
Nz x Nyx Nz 101 x 121 x 121 = 270000+H 101 x 288 x 238 0 . L : . ’
SGS Model MSM Dyn FSF , 0 . 5 xiny 10
Inﬂowa Utb U+b Utb Fig. 11.7. Round jet. Axial evolution of the radial position of the point where the
ggifﬂ )) z+up3 g—\—upB i/ 6 mean velocity is half the maximum velocity. Dots: experimental data. Dot-dashed

lines: extrapolation of this data. Solid line: LES computation. With the permission
f P. Comte, LEGL )
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Fig. 11.8. Round jet. Axial evolution of the mean longitudinal velocity. Dot

experimental data. Line: LES computation. With the permission of P. Comte, LEG
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Fig. 11.9. Round jet. Axial evolution of the normalized longitudinal turb‘uléntf’
intensity. Dots: experimental data. Line: LES computation. With the permission of

P. Comte, LEGI.
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Fig. 11.10. Round jet. Axial evolution of the normal turbulent intensity. Dots:
experimental data. Line: LES computation. With the permission of P. Comte, LEGI.

dependency on the initial perturbation, on the boundary conditions, or on
the computational grid. The axial profiles of two main Reynolds stresses are
presented in Figs. 11.9 and 11.10. These results are qualitatively correct.
The Reynolds stresses increase along the axis and exhibit a maximum in
a region close to the tip of the potential cone, which is in agreement with
he experimental observations. It is noted that the level of the longitudinal
tress predicted by the computation is higher than the experimental level in
he pure jet region. The peak observed on the downstream boundary of the
Smputa’cional domain is a spurious effect that is no doubt related to the
utflow condition. Generally, it is noticed that the quality of the results is
ot as good as in the case of the plane channel flow, which illustrates the fact
hat this flow is a more complicated case for large-eddy simulation.

Lastly, the velocity spectra generated from the computation are presented

‘in Fig. 11.11. Over a decade, the computations recover a slope close to the

5/3 predicted by theory, and which is the foundation of the theoretical
nalyses presented in the previous chapters. This indicates that the resolved
turbulent scales have “physical”behavior.

1. More generally, the conclusions given by the various authors are the fol-

“lowing.

- The dynamics of the numerical solution is consistent, 4.e. the values pro-
‘duced are located within the bounds fixed by the collected set of exper-
‘imental measurements and the topology of the simulated flow exhibits
the expected characteristics (potential cone, annular mixing layer, and so
forth).
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L — The numerical solution exhibits a strong dependency on many parameters,
-17 ] '

among which we find:

— the subgrid model, which allows a more or less rapid transition of the
‘annular mixing layer are consequently influences the length of the poten-
tial cone and the turbulent intensity by modifying the effective Reynolds
number in the simulation. More dissipative models delay the develop-
ment of the mixing layer, inducing the existence of a very long potential
cone.

— the inflow condition: the mixing layer transition is also strongly depen-
dent on the amplitude and shape of the perturbations.

— the numerical error, which can affect the turbulent of the annular mixing
layer and of the developed jet, especially during the transition phases.
Here it is a matter of an error controlled by the computational grid
and the numerical method. A dispersive error will have a tendency to
accelerate the transition and thereby shorten the potential cone. A dis-
sipative error will have the inverse effect. With too coaise a grid, the
annular mixing layer cannot be represented correctly, which can induce
it to thicken too quickly and thereby decrease the length of the potential
cone. ‘

— the size of the computational domain. The computation is sensitive to
the size of the computational domain, which modulates the effect of the
boundary conditions, especially the outflow condition.

— All the computations predict the dominant time frequency of the jet cor-

rectly, which is therefore not a pertinent parameter for analyzing the mod-

els finely. :

— The quality of the sunulatlon is not a global character Certain parameters

can be correctly predicted while others are not. This diversity in the ro-

bustness of the results with respect to the simulation parameters sometimes
makes it difficult to define discriminatory parameters.

PR Y
—_
o

LI0) B e A e e

LA B Y L U

TSI

|
I
|
|
!
!
i
1
1
|
|
[

d
!
!
|
l
1
1

Xr9D;
capeedl Lo el |

107! 1

1

-5/3 2 1

X=9D;
. FETEETTY LS

-t 1 10

T T T T TTTIT

-5/3 2

s
(@]

E(f)
L B I
NS N
E(k)
L L B I

|
1
1
|
|
! ekt gl |

107! 1

TTTY T T T T

-5/3 2

e
[e]

—_

|

LIS I L B LR B B

LN S St I R e R B U S A

Other Examples of Free Shear Flows. Other examples of free shear flows
in spatial expansion have been simulated:
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~ plane mixing layer (see [310]);
— planar jet (see [70]);
— plane wake (see [109, 125,339]).

The conclusions drawn from the analysis of these different cases corrob-
orate those explained previously for the round jet as concerns the quality of
the results and their dependency as a function of the computation param-
eters (subgrid model, grid, inflow condition, computational domain, and so

forth) These conclusions are therefore valid for all free shear flows in spatial
éxpanswn

Fig. 11.11. Round jet. Time (left) and space (right) spectra of solved’
kinetic energy at different positions along the axis. With the permission of P: Comte
LEGL

— While the dynamics is consistent, it is nonetheless very dlfﬁcult to: repro
duce a particular realization (for example with fixed potential cone: length
and maximum turbulent intensity). '
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11.3.2 Backward Facing Step

Problem Description. The flow over a backward facing step of infinite
span is a generic example for understanding separated internal flows. It
involves most of the physical mechanisms encountered in this type of flow:
and is doubtless the best documented, both experimentally and numerically, -
of the flows in this category. Its dynamics can be decomposed as follows.
The boundary layer that develops upstream of the step separates at the step
corner, becoming a free shear layer. This layer expands in the recirculation
region, thereby entraining turbulent fluid volumes. This entrainment phe
nomenon may influence the development of the shear layer, which curves
inward toward the wall in the reattachment region and impacts with it. After
the reattachment, the boundary layer re-develops while relaxing toward a
profile in equilibrium. The topology of this flow is illustrated in Fig. 11.12
which is developed from large-eddy simulation data. We observe first the
transition of the separated shear layer, the formation of vortex structures in
the impact area, and then of hairpin structures in the boundary layer after
the reattachment.

This flow brings out difficulties in addition to those of the round jet,
because it adds the dynamics both of the free shear layers and of the near
wall region.

Fig. 11.12. Backward Facing Step. Iso-surface of instantaneous vorticity. With thé, :
permission of F. Delcayre, LEGI. S
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Table 11.3. Backward facing step computation characteristics.
Ref. [103] [294] [309] (122]
Rey 1,65.10° 11200 38000 28 000
Lz x Ly x Lz 16 x4 x 2 20 x4x2,5 30x5x%x25 30x3x4
Nz x Nyx Nz 128 x 32 x 32 201 x 31 x 51 200 x 30 x 30 244 x 96 x 96
SGS Model Se ‘MSM FS DynLoc
Inflow P U+b U+b U+b,Ca
Wall MSec - MLog -
O(Az®) 2 24-up3 2+up3 2

o(AtP) 2 2 2 3

A Few Realizations. The methods used for simulating this flow are il-
lustrated by four computations presented in Table 11.3. The parameters
indicated are. : '

— Reynolds number Rey, referenced to the step height H and the inflow
velocity profile;

— the dimensions of the computational domain, referenced to the length H ;

— the number of grid points used;

~ subgrid model used (“Sc”means the Schumann model (5.70); “MSM”the

“"Mixed Scale Model (4.116); “SF”the Structure Function model (4.102);
“DynLoc”the constrained localized dynamic model (4.188)). As before for
the round jet, only subgrid viscosity models have been used in the config-
uration. .

— upstream condition generation mode: U +b means the same thing as before,

while ‘P designates the use of a precursor, which in this case is a large-eddy

simulation of a plane channel flow in [103]; Ca indicates the use of an inflow

channel to allow the development of a “realistic” turbulence upstream of the

separation. Depending on the author, the length of this channel is between

four and ten H.

— treatment of the solid walls: “-“is the no-slip condition; MSc the Schumann

wall model, (9.19) to (9.21); MGz the Grétzbach wall model (9.22). Tt
can be seen that the use of wall models reduces the number of points
considerably and makes it possible to simulate flows with high Reynolds
numbers.

— spatial accuracy of the numerical method;

— time accuracy of the numerical method.

The results the various authors have obtained are generally in good qual-
itative agreement with experimental data: the flow topology is recovered and

“thé realizations show the existence of coherent structures similar to those

observed in the laboratory. On the other hand, there is much more difficulty

- obtaining quantitative agreement whenever this is possible at all (only ref-
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erence [122] produces results in satisfactory agreement on the mean velocifir
field and turbulent intensity). This is due to the very high sensitivity of the

result to the computation parameters. For example, variations of the order
of 100 % of the average length of the recirculation region have been 'recordé‘d :
when the inflow boundary condition or subgrid model are manipulated. This

sensitivity stems from the fact that the flow dynamics is governed by that

of the separated shear layer, so the problems mentioned before concerning -
free shear flows crop up here. We also note a tendency to under-estimate :
the value of the mean velocity in the recirculation area. However, as in the .

case of the round jet, the simulated physics does correspond to that of
backward facing step flow. This is illustrated by the mean velocity profile

and resolved Reynolds stresses in Fig. 11.13, and the pressure spectra in Fig! :
11.14. The good agreement with experimental data in the prediction of the
mean field and Reynolds stresses proves the theoretical consistency of the -

computation. This agreement is even clearer if we analyze the spectra. Neai

the step, the mixing layer dynamics is dominated by frequencies associated

with the Kelvin-Helmholtz instability. The predicted value of the dominan
frequency is in very good agreement with experimental observations. The

double peak at the second measurement point shows that the simulation is

capable of reflecting the low-frequency flapping mechanism of the separaté:
region, and still remain in good agreement with experimental observations:

Also, it seems that the use of wall models does not affect the dyn&micsh :

of this shear layer greatly. It becomes possible to deal with higher Reynold:

numbers, but at the price of losing some of the quality of the results as ‘con:
SRR

y/M s y/H y/M
3 3 3 3
n
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2 2 2 2
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Fig. 11.13. Backward Facing Step. Mean velocity and Reynolds stresses, proﬁles
at the reattachment point. Triangles and solid line: LES computations. Squares:
experimental data. With the permission of F. Delcayre, LEGIL. . i
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0.006

o x=1.075H y=1.0H

i | A x=5.45H y=0.605H
0.004 2 #

0.002

Pressure spectra

Fig. 11.14. Backward Facing Step. Pressure spectra. Squares: in the free shear
layer near the step corner. Triangles: in the separated region near the reattachment
point. With the permission of F. Delcayre; LEGI.

cerns the wall surface terms (friction, pressure coefficient) in the recirculation
zone [39]. Solutions for this configuration turn out to be highly dependent on
the subgrid model: too dissipative a model will retard the development of the
separated shear layer, pushing away the position of the reattachment point.

The results are also found to be dependent on the size of the domain and
the fineness of the mesh in the spanwise direction, because these parameters
affect the development of the mixing layer emanating from the step corner.
A spanwise domain width of 4 to 6 H is considered to be a minimum in order
to be able to capture the three-dimensional mechanisms at low frequencies.
Lastly, the time frequencies associated with the separated zone dynamics are
robust parameters in the sense that they are often predicted with precision.

11.3.3 Square-Section Cylinder

Problem Description. The square-section infinite-span cylinder is a good
example of separated external flows around bluff bodies. This type of configu-
ration involves phenomena as diversified as the impact of the flow on a body,
its separation (and possible reattachment) on the body surface, the formation
of a near-wake region, and alternating vortex street, and the development of
the wake up to a self-similar solution. Each of these phenomena poses its own
particular numerical and modeling problems.

Realizations. This flow was chosen as an international test case for large-
eddy simulation, and has consequently served as a basis for many compu-
tations, which are mos#'= summarized in [279] (see also [254,333,334] for a
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discussion of this test case). The test case parameters are: a Reynolds number
Rep, referenced to the length D of the cylinder edge and the freestream
velocity, equal to 22,000, and a computational domain of 20D x 4D x 14D.
The span is assumed to be infinite and a periodicity condition is used in this
direction. ;
None of the sixteen computations collected in [279] produces an overall
good agreement with experimental data, ¢.e. is capable of predicting all of the;
following parameters with an error of less than 30 %: average lift and drag;
drag and lift variances; main vortex shedding frequency; and average length:
of the separated region behind the cylinder. Average lift and drag, as well:
as the vortex shedding frequency, are very often predicted very satisfactorily.:
This is due to the fact that these quantities do not depend on the small*
scale turbulence and are governed by Von Karman structures, which are very:
large in size. The length of the recirculation region behind the cylinder is
very often under-estimated, as is the amplitude of the mean velocity in this!
region. Also, the mean velocity in the wake is only very rarely in agreement:!
the experimental data. '
The numerical methods used are of moderate order of accuracy (at mos
second-order in space and third-order in time), and third-order upstream
upwind schemes are often used for the convection term. Only subgrid viscosity:
models have been used (Smagorinsky model, various dynamic models, Mixé
Scale Model). Certain authors use wall models at the cylinder surface.
The lack of agreement with experimental data is explained by the ver
high sensitivity of the different driving mechanisms to the numerical errty
and to the diffusion introduced by the models. So we again find here th
problems mentioned above for the case of the backward facing step, but now
‘they are amplified by the fact that, in order to master the impact phenomenon’
numerically, the numerical diffusion introduced is much stronger than in‘vt}f‘e
former case. Also, as most of the grids used are Cartesian and monodomém
the resolution near the cylinder is too weak to allow a satisfactory represén:
tation of the boundary layers. s

11.3.4 Other Examples

Many other flows have been examined by large-eddy simulation. it

Among wall-bounded flows without separation, we may mention: flat =
plate boundary layer [92, 109, 206]; boundary layer on a curved surface in
the presence of Gértler vortices [203]; flow in a circular-section toric pipe .
[298]; three-dimensional boundary layer in equilibrium [349]; juncture flow
[316]. W
Examples of recirculating flows are: confined coaxial round Jjets [3]; flow
around a wing section of infinite span at incidence [151-153, 161, 180] (see Fig.
11.15); flow in a planar asymmetric diffuser [95,158,160, 162]; flow around
a cube mounted on a flat plate [219,255, 279, 345]; flow around a circular-
section cylinder [18, 36,155,237, 238]; flow in a lid-driven cavity [366]; flowin .
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Re = 200000

incidence = 20 degrees

R. Larda¥/L. Ta Phuoc (LIMSI-CNRS/Orsay)

Fig. 11.15. Flow around a wing at high incidence: iso-surface of instantaneous
vorticity. With the permission of R. Lardat and L. Ta Phuoc, LIMSI.

a ribbed channel [64, 354]; jet impacting a flat plate [261,277, 338]; boundary
layer on a wavy surface or a bump [88,135,173, 350~-352}; flow over a swept
wedge [144]; flow past a blunt trailing edge [217]; separated boundary layer
[40, 346].

11.4 Lessons
11.4.1 General Lessons

We can draw the following lessons concerning the large-eddy simulation tech-
nique from the computations mentioned above:

— When the technique is used for dealing with the ideal case in which it was
derived (homogeneous turbulence, optimum numerical method), it yields
very good results. The vast majority of subgrid models produce results that
are indiscernable from reality, which removes any discriminatory character
from this type of test case, which in fact can only be used to assess the
consistency of the method.

— Extending the technique to inhomogeneous cases brings up many other
problems, concerning both the physical modeling (subgrid models) and
the numerical method. The latter point becomes crucial because the use of
numerical methods of moderate order of accuracy (generally two) greatly
increases the effect of the numerical error. This is accentuated by the use of
artificial dissipations for stabilizing the simulation in “stiff” cases (strong
under-resolution, strong gradients). This error seems to be reducable by

i
i
3

]
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refining the computational grid, which is done more and more by using
adaptive grids (local adaptation or enrichment).

— Shear flows show themselves to be very strongly dependent on the inflow '
condition when this is unsteady. Generating these conditions is still an
open problem.

— The quality of the results is variable but, for each configuration, robust,
correctly predicted parameters exist. The physics simulated is often consis-
tent in that it exhibits the generic features that are observed experimentally
but does not necessarily correspond to a desired target realization. This is '
due to the dependency on the many simulation parameters. :

— The quality of the results is subordinate to the correct representation of °
the flow driving mechanisms (transition, near-wall dynamics, and so forth).
Low numerical error and consistent modeling are therefore mandatory in -
those regions where these mechanisms occur. The other regions of the
flow where the energy cascade is the dominant mechanism are of lesser
importance. . A

— When the flow dynamics becomes complex, subgrid viscosity models are
often used. This is because they provide a clear kinetic energy dissipation
and therefore stabilize the simulation. This stabilizing character seems 0
become predominant compared with the physical quality of the modeling
insofar as the numerical difficulties increase (with the presence of stro '
highly heterogeneous grids, and so forth).

— There is a consensus today that the numerical method used must be acc
rate to at least the second order in space and time. First-order accurate du-
merical dissipations are totally proscribed. Third-order accurate methd‘ds
in time are rarely used. As concerns the spatial accuracy, satisfactory e
sults are obtained by certain authors with second-order accurate methods
but higher-order accurate schemes are often used. Numerical stabilizatio
methods (upwind scheme, artificial dissipation, smoothing, and so forth
should be used only when absolutely necessary.

11.4.2 Subgrid Model Efficiency .

Here we will try to draw some conclusions concerning the efficiency of the
subgrid models for processing a few generic flows. These conclusions should
be taken with caution. As we have seen all through this book, very many
factors (numerical method, grid, subgrid model, and others) are involved and_
are almest indissociable, so it is very difficult to try to isolate the effect"*v'(v)f
a model in a simulation. The conclusions presented are statistical in'‘th
sense that they are the fruit of an analysis of simulations performed: on’
similar (at least geometrically) flow configurations with different methods
A “deterministic” analysis could lead to contradictory conclusions, dependin, :
on the other. Also, there is no question of ranking the models, as the available”
information is too spotty to draw up a reliable list. Lastly, very many factors:
like the discretization of the subgrid models still remain t¢ . studied.
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We may, however, sketch out the following conclusions.

1. To simulate a homogeneous flow:

a) All subgrid models including a subgrid viscosity yield similar results.

b) Scale similarity models do not yield good results if used alone. This
is also true for all the other types of flows.

2. To simulate a free shear flow (mixing layer, jet, wake):

a) Subgrid viscosity models based on the large scales can delay the
transition. This problem can be remedied by using a dynamic proce-
dure, a selection function, or an accentuation technique. The other
subgrid viscosity models seem to allow the transition without any
harmful effects.

b) Using a mixed structural/functional model improves the results ob-
tained with a subgrid viscosity model based on the large scales.

3. To simulate a boundary layer or plane channel flow:

a) Subgrid viscosity models based on the resolved scales may inhibit
the driving mechanisms and re-laminarize the flow. As before, this
problem is resolved by using a dynamic procedure, selection function,
or accentuation technique. The other subgrid viscosity models do not
seem to exhibit this defect.

b) Using a mixed functional/structural model can improve the results
by taking the driving mechanisms better into account.

¢) Using a model for the backward cascade can also improve the results.

4. For separated flows (backward facing step, for example), use a model that
can yield good data on a free shear flow (to capture the dynamics of the
recirculating area) and on a boundary layer (to represent the dynamics
after the reattachment point).

5. For transitional flows:

a) Subgrid viscosity models based on the gradients of the resolved scales

* generally yield poor results because they are too dissipative and damp
the phenomena. This problem can be remedied by using a dynamic
procedure, a selection function, or the accentuation technique.

b) Anisotropic tensorial models can inhibit the growth of certain three-
dimensional modes and lead to unexpected scenarios of transition to
turbulence. :

6. For fully developed turbulent flows, the problems with subgrid viscosity
models based on the large scales are less pronounced than in the previ-
ous cases. Because these flows have a marked dissipative character, they
produce results that are sometimes better than the other models because
they ensure numerical stability properties in the simulation.
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A. Statistical and Spectral Analysis
of Turbulence

A.1 Turbulence Properties

Flows qualified as “turbulent”can be found in most fields that make use of
fluid mechanics. These flows posses a very complex dynamics whose intimate
mechanists and repercussions on some of their characteristics of interest to
the engineer should be understood in order to be able to control them. The
criteria for defining a turbulent flow are varied and nebulous because there
is no true definition of turbulence. Among the criteria most often retained,
we may mention [68]:

— the random character of the spatial and time Huctuations of the veloci-
ties, which reflect the existence of finite characteristic scales of statistical
correlation (in space and time);

— the velocity field is three-dimensional and rotational;

— the various modes are strongly coupled, which is reflected in the non-
linearity of the mathematical model retained (Navier-Stokes equations);

— the large mixing capacity due to the agitation induced by the various scales;

— the chaotic character of the solution, which exhibits a very strong depen-
dency on the initial condition and boundary conditions.

A.2 Foundations of the Statistical Analysis
of Turbulence

A.2.1 Motivations

The very great dynamical complexity of turbulent flows makes for a very
lengthy deterministic description of them. To analyze and model them, we
usually refer to a statistical representation of the Auctuations. This reduces
the description to that of the various statistical moments in the solution,
which sharply reduces the volume of information. Moreover, the random
character of the fluctuations make this approach natural.
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A.2.2 Statistical Average: Definition and Properties

We use (¢) to denote the stochastic mean (or statistical average, or mathe-

matical expectation, or ensemble average) of a random variable ¢ calculated

from 7 independent realizations of the same phenomenon {¢; }:
1 n

(¢) = lim -~ ; $ (A1)

The turbulent fluctuation ¢; associated with the realization ¢; is defined
as its deviation from the mathematical expectation: Cg

¢ = ¢ = (¢)
By construction, we have the property:
(¢)=0

On the other hand, fluctuation moments of second or higher order aren
necessarily zero. The standard deviation o can be defined as: ;e

(@)

We define the turbulence intensity as a/(¢). : i
The correlation at two points in space and two times, (x,x’) and (¢, t') of
the two random variables ¢ and 1, denoted Ryy(x, %, t,¢') is:

RQW)(Xa x/7 i tl) = <¢(X’ t)l/)(xlyt/»

0'2:

A.2.3 Ergodicity Principle

When ¢ is a random steady function in time (i.e. its probability den31ty
function is independent of time), we can apply the ergodicity principle acCor
ing to which it is equivalent, statistically speaking, to consider 1ndeﬁn1tely
repeated experiments with a single drawing or a single experiment with an
infinite number of drawings. We will therefore admit that a single experi-
ment of infinite duration can be considered as representative of all possib ’
scenarios.

The-theorem of ergodicity says that the quadratic mean.of the random
function ¢r(t) defined by:

converges to a non-random limit equal to the stochastlc mean () as T — oo :
only on the condition that: e
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1 /T

where Ry 4 (t) is the time autocorrelation (or covariance) of the fluctuations
of ¢ over time interval ¢:

Ryrar () = ((¢(t)) — (9 (' + ) — (#)))

For turbulent fluctuations, the random character re_f_lects the fact that
Ry (t) — 0 as t — 0. So if we define the mean in time ¢ as the limit of ¢r

as T — o0, i.e.:
/ pe)de

= (#)

We establish that the standard error varies as 1/+/T for sufficiently large
T. Another way of estimating (¢) is to construct the “experimental”average
¢n, defined as the arithmetic mean from experiments:

quz(t) ,

where the time ¢ is arbitrary since the flow is assumed to be statistically
steady. We show that the standard error decreases as 1/4/n if the experiments
¢y are independent.

Let ¢ and 1) be two random variables. The operator ( )thus defined verifies
the following properties, sometimes called Reynolds rules:

(A8)

_— lim —

T-300 T (AQ)

we get the equality:
(A.10)

Pn(t) = (A.11)

(@+) =@+ (A.12)
{ag) = a{¢p) a= comst. , (A.13)
(&) = (D)) (A.14)
9¢, _ 9(¢) _
<E = —5o- =x,1 , (A.15)
( / 9, H)dxd) = / (6(x, 1))dxdt (A.16)

Any operator that verifies these properties is called a Reynolds operator.

‘We deduce from these relations the properties:

({(8) = (&
@) =0

(A.17)
(A.18)
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A.2.4 Decomposition of a Turbulent Field

Decomposition Principle. One techni
ing a turbulent field is statistical re
and position x splits into:

que very commonly used for describ. v
presentation. The velocity field at time's

@

u(x,t) = (u(x,t)) + u'(x, t) (A19) .
Using this decomposition and the stochastic mean, we define an evolution
equation for the quantity (u(x,t)). To recover all the information contained
, » we have to handle an infinite set of equations for the
statistical moments of it. The quadratic non-linearity of the Navier-Stokes ,
equations induces an intrinsic coupling among the various moments of the
solution: the evolution equation of the moment of order n in the solution :
uses the moment of order (n + 1). To recover all the information in' the
exact solution, it is thus necessary to solve an infinite hierarchy of coupled
equations. As this is impossible in practice, this hierarchy is truncated ‘af
an arbitrarily chosen level so as to obtain a finite number of equations. This
truncation brings out an unknown term that will be modeled using closu
hypotheses. If the degree of precision of the information obtained theoretically
increases with the number of equations retained, the consequences of the
truncation and of the hypotheses used are difficult to predict. ’

Equations of the Stochastic Moments. The evolution equations of the.
mean field are obtained by applying the averaging operator to the Navi
Stokes equations. By applying the rules of commutation with the derivation .
in the case of an incompressible Newtonian fluid and with no external forcé‘s,,
we get =

o) 0 . o) o) N
ot ey ) = gy e (420
Ofui) o
Bz 0 (421

where v is the kinematic viscosity. The non-linear term (uiu;) is unknown
and has to be decomposed as a Function of (u) and w'. By introducing relatio:
(A.19) and considering the properties (A.12) to (A.18), we get:

(wet) = (i) (u5) + {ufuy (A.22)
The last term of the right-hand side, called the Reynolds tensor, is uns
known and has to be evaluated. It represents the coupling between the.
fluctuations and the mean field. This evaluation can be made by solving
the corresponding evolution equation, either by employing a model, called:
closure or turbulence model. ;
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A.2.5 Isotropic Homogeneous Turbulence

Definitions. A field is said to be statistically homogeneous along the pa-
rameter z, or imprecisely just “homogeneous”, if its statistical moments are
independent of the value of z where the measurements are made. This is
expressed: '

0
B ($1-6a) =0

(A.23)

A homogeneous field is said to be statistically isotropic (in the Taylor
sense), or more simply “isotropic”, if all statistical moments relative to a
set of points (z1,...,z,) at times (t1,...,tn) remains invariant when the set
of n points and the coordinate axis are rotated, and if there is statistical
invariance for symmetry about an arbitrary plane.

We may note that there exists an idea of quasi-isotropy introduced by
Moffat, which does not require the invariance by symmetry. -

A Few Properties. A turbulent field is said to be homogeneous (resp.
homogeneous isotropic) if its velocity fluctuation u’ is homogeneous (resp.
homogeneous isotropic). One necessary condition for achieving homogeneity
is that the mean velocity gradient be constant in space:

O{ui)

A.24
9, (A.24)

= const.

Isotropy requires that the mean field (u) be zero. When the turbulence
is isotropic, only the diagonal elements of the Reynolds tensor are non-zero.
Moreover, these are mutually equal:

(ujug) = §K5i~ (A.25)

b

where K is the turbulent kinetic energy.

A.3 Introduction to Spectral Analysis
of the Isotropic Turbulent Fields

A.3.1 Definitions

The tensor of correlations at two points R,p(r) of a statistically homogeneous
vector field u defined as:
Rap(r) = (ua(x + rjug(x)) (A.26)

can be related to a spectral tensor ®os(k) by the following two relations:
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Rup(r) = / BopK)elimidk (A.27)
1 ik ’
Bos(k) = o / Rup(r)esmid®k (a29
where i2 = —1. The tensor at the origin, R,3(0), is the Reynolds tensorj.

In the case of an isotropic field, the general form of the correlation tensor
becomes:

(A.29)

Rosr) = K ([1(0) = 9(r)) 252 + 9(r)oup)

where f(r) and g(r) are two real scalar functions. When the velocity field is
solenoidal, these two functions are related by:

rof(r) \
= = A.
o(r) = ) + 52 (A.30)
The incompressibility constraint also allows us to establish the followihg
relation for the tensor ®,p(k): .
E(k) kokg L
Bap(0 = o3 (00— S552) (A3

where the scalar function E(k) is called a three-dimensional spectrum. It
represents the contribution of the wave vectors of k to the turbulent kinetic
- energy, i.e. wave vectors whose tips are included in the region located between
two spheres of radius k and k+dk. The spectral energy density, denoted A(k),
is therefore equal to E(k)/4mk?. The three-dimensional spectrum is computed
from the spectral tensor by integration over the sphere of radius &:
1 N
B = 5 [ @u(9as0e) (A.32)
where dS(k) is the integration element on the sphere of radius k. This quan-
tity can also be related to the function f(r) by the relation:
K [* '
E(k) = ?/ kr (sin(kr) — kr cos(kr)) f(r)dr (A.33)
0
The turbulent kinetic energy, K, is found by summation over the entire
spectrum:

1,1 o0
i o= ) _ / E(k)d*k
2 0

By construction, the spectral tensor has the property:
0i;(~k) = @j;(k)

where the asterisk indicates the complex conJugate number The homogenelty, :
property of the turbulent field implies: :
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5 (k) = @5, (k)

~The spectral tensor can also be related to the velocity fluctuation u’ and
to its Fourier transform U defined as:

(A.36)

~ 1 ik,
() = s / o ()¢~ k5% g (A7)
Simple expansions lead to the equality:
(g (k") (k) = ok + k')®;; (k) (A.38)

So we see that the two modes are correlated statistically only if k+k’ = 0.
An equivalent definition of the spectral tensor is:

2,00 = [ @ WP (A.39)

A.3.2 Modal Interactions

The nature of the interactions among the various modes can be brought
out by analyzing the non-linear term that appears in the evolution equation
associated with them. This equation, for the mode associated with the wave
vector k (the dependency on k is not expressed, for the sake of simplicity) is:

9t
ot

+ ikjaij = —ik;p — vk2u; (A.40)

The two quantities @;; and P are related to usu; and the pressure p by
the relations:

ul:-(x)uj(x) = /aij(k)eikl””ldsk (A.41)
Tp6) = [ Bgeeidk (A42)
By introducing the spectral deconipositions:
ui (%) = / 2, )elkim Bk (A.43)
(%) = / 3, (k") eH =1 (A.44)

the non-linear term becomes:
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®

wi(x)u;(x) = / / (k)i (k ~ K)dK ebim Py (A.45) whare;
I i ik
) Oy = W/(ug(x)ui(x)u;(x+r))e Yentn B (A.52)
where we have performed the variable change k = k' + k. The pressure term ;= 1 / l@' (x)us(x + r))e_ik"’""d3r (A.53)
is computed by the Poisson equation: @) p ’
k kik
1P Su (540 = 2um gz Bmj — Oy (A.54)
pOmdz — Ozide; o —IOT (A.55)
or, in the spectral space: N Oz; .
kP = ~kikpay, . - (A.47) o n]iy expanding the terms (A.52) and (A.54), equation (A.51) takes the .
The momentum equation therefore takes the form: -
0 Ou; Ou;
5 ' (ﬁ + 2uk2) By(k) + g;") (k) + é;’)@u (k)
[52 + vkz] Ui(k) = Mijm (k) /ﬁm(k’)ﬁj(k - k)d®k’ | (A.48): 8(; ) ! '
< = 2 (B (k) + by @rni(1)
in which Blu sn P
i - aml o (i®i; (1))
Mijm (k) = =3 (km Pyj (k) + k; P (K)) (A.49) m L .
= Pu(l)Ti; (k) + Pa(l)Tyi(k) ,  (A.56)
where P;;(k) is the projection operator on the plane orthogonal to the vecto wh
k. This operator is expressed: : where _
. . N s —_— . f— — 3
Pot9 = (5, k1) (A50) Lo =k [ [ [wtome(-k-ppp . (asn)

The evolution equation for the energy spectrum E (k), derived from (A.51)
by integration over the sphere of radius k, is:

W) — pwy+ 70+ D) (A.58)

The linear terms are grouped into the left-hand side and the non-linea]
terms in the right. The first linear term represents the time dependency and
the second the viscous effects. The non-linear term represents the effect o
convection and pressure. We can see that the mode k interacts with the modes
p =k’ and q = (k — k') such that k -+ P = q. This triadic nature of the’:
non-linear interactions is intrinsically related to the mathematical structure
of the Navier—Stokes equations.

where the kinetic energy production term P(k) by interaction with the mean
field, the transfer term T'(k) and the dissipation term D(k) are given by:

i P(k) = =Xijdiz (k) (A.59)
A.3.3 Spectral Equations 1 : O(kuii)
; T(k) = — [ (kz(@m + ez?li) + Alm“) dS(k) ’ (A.ﬁO)
The equations for the spectral tensor components ®;; are obtained by apply- 2) Okm ).
ing an inverse Fourier transform to the transport equations of the two-poin‘g D(k) = —2yk2E(k) , (A.61)

double correlations. After computation, we get:

8@1‘]- 0@@' 2 _
Bt )\lmklahkm‘ + )\zlq)l] + /\]£¢1l + 2vk @z] =

where the tensor ¢;;(k) is defined as the integral of ®;;(k) over the sphere of
radius k:

(ki®uj + ki®F;) + (ki + k;%2) , (A1)
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%W=]%®ﬁ®- (A62)

The kinetic energy conservation property for ideal fluid is expressed by:

AWNMMzo. (A63)

We come up with the kinetic energy evolution equation in the physical
space by integrating the equation (A.58) over the entire spectrum:

0K _ [ 0E(k)

5 dk—/ P(k)dk+/ T(k)dk+/0 D(k)dk . (A-64).

In the isotropic homogeneous case, production is zero and we get:
0K

_é? - »
where the kinetic energy dissipation rate € is given by:

s:/2%@®%. (A.66)
0

A.4 Characteristic Scales of Turbulence

Several characteristic scales of turbulence can be defined. We define t
integral scale Léj as

= /*+c><> R;j(r)dr

This scale is representative of the length over which the turbulent flu
tuations are mutually correlated, so it is directly related to the size of the
structures that form the turbulent field. Another scale, called the Taylor
microscale, is denoted A, and is defined as:

- (3

While the first scale is associated with all the turbulent structures,gtms
latter scale is related directly to the small scales of the turbulence. Consid-
ering that the dissipation , can be written as:

e = 2u<(%%)2> ,

()
Az

The Taylor microscale thus appears as charactenstlc of the dlSSlpa.tlve
phenomena.

Bt

we get the relation:

€ =2y

= —£ (A.65 :
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A.5 Spectral Dynamics
of Isotropic Homogeneous Turbulence

A.5.1 Energy Cascade and Local Isotropy

Analyses on the basis of eqﬁation (A.58) show that the dynamical mechanism
associated with the term T'(k) is a kinetic energy transfer from the small wave -
numbers to the large. This process is called the energy cascade. It is relatively
local in frequency: the transfers are negligible among wave numbers separated
by more than two decades. It repeats itself until such time as the structures
are so small that the viscous mechanisms, represented by the D(k) term,
become preponderant.

The local isotropy hypothesis formalized by Kolmogorov assumes sta-
tistical homogeneity and isotropy in a small space-time domain and not
throughout the flow. This is equivalent to the hypothesis that the flow scales,
while sufficiently small, are governed by a dynamics similar to that of isotropic
homogeneous turbulence. They are thus independent of the large scales and
their statistical structure acquires a universal character.

Kolmogorov’s first hypothesis is that the statistical moments of the scales
located in such a domain depend only on the separation distance 7, the total
dissipation by viscosity per unit mass €, and the viscosity v.

The second hypothesis is that the statistical moments for large separation
distances become independent of the viscosity and are no longer a function
of r and €.

A.5.2 Equilibrium Spectrum

With the hypothesis of local isotropy, we find three distinct regions in the
energy spectrum F(k):

— the large scale region where the turbulence associated with the P(k) term is
produced. These scales are coupled with the mean field and are affected by
the boundary conditions, so they possess no universal character. However,
following arguments related to the finite character of the energy spectral
density A(k) , we can say that:

E(k) ~ k* or E(k) = k? fork < 1 (A.71)

— the inertial range, associated with the intermediate scales, in which the
energy is transferred by non-linear interaction with no action by viscosity or
production. The energy spectrum depends only on k and €. Since the energy
is transferred without loss, € remains constant. Assuming that there exists
a self-similar form of the power-law ‘spectrum, by dimensional arguments
we get:

E(k) = Ko™k~ (A.72)

where the constant 7 -called the Kolmogorov constant, is close to 1.5.
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— The dissipation region, which comprises the smallest scales where the ki-
netic energy is dissipated by the viscous effects. In this area, the relaxation
time 74 associated with the viscous effects is at least equal to that of the

non-linear transfers, denoted Te. For a length scale I, these two times are
evaluated as:

a~ly, 1. Ve . (A.73)

The dissipation region is characterized by the relation:

TaSTe==1<\13e . (A.74)

We call the Kolmogoroy scale, which is denoted 7K, the scale for which
these two times are equal and which marks the beginning of the dissipation
region: i

k= /iBJe . (A.75)

The characteristic velocity associated with this scale is:

vk = (ve)'/4

The energy spectrum depends explicitly only on k,vande, or equivalently

on k, the Kolmogorov scales 7K, and vk . The dimensional arguments do n

lead to a unique form E(k), and several solutions have been proposed. At-
guments concerning the regularity of the velocity field and these gradients
suggest an exponential decay of E(k) in this region. Do

g

(a76)

B. EDQNM Modeling

The EDQNM model is briefly described here in its isotropic and anisotropic
versions. For more details concerning the isotropic version, the reader may
refer to the work of Lesieur [189]. .

B.1 Isotropic EDQNM Model

Starting with the Navier—Stokes equations written in symbolic form:

(% + Vk2> U =uy , (B.1)

" we derive an infinite hierarchical set of evolution equations as usual for the

statistical moments of the velocity u:
(% + yk2> (wu) = (uuu) (B.2)

(% +v(k* 4+ p? + qz)) (uuv) = (uuuu) (B-3)

b

where the symbol () designates a statistical average. We then adopt the
following hypothesis. '

Hypothesis B.1 (Quasi-normality Hypothesis). The velocity distribu-
tion law is close to the Gaussian bell curve and its fourth-order cumulant,
denoted (uuuu), is zero.

The evolution equation of the triple correlations then become:
(% +v(k* 4 p? + qz)) (uuu) = Z(uu) (uu) . (B.4)
The quasi-normal approximation does not provide the realizability condi-

tion, i.e. the spectrum E(k) can take negative values. To recover this property,
Orszag proposes introducing a triple-correlation damping term and then gets:
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<% Fu(k? o p? q2)> (uuu) = Z(uu) (uu) — (e + 1p + 1g) (uun) . (B5)

The solution to this equation is:

(uuu)(t)=/0 Z(uu)(uu)e_(”k“L"PJ““‘J)tdt , (B.6).‘

Y

with
e =+ vk: . (B‘.k‘7_:)’

To get a solution that is easier to calculate, we adopt the following hy-
pothesis:

Hypothesis B.2. The relazation time of the triple correlations is small com-
pared with the relazation time of the double correlations (which is also that
of the energy spectrum,).

With this hypothesis, we can “Markovianize” equation (B.6), which leads
to:

(uuu)(t) = Z(uu) (uu) /0 e~ Brtpptugdt e
_ Zw“) () 1 — e~ (sxtuptuglt

I
This relation closes the derivation equation of the second-order moments.
“This closure is equivalent to replacing the solution of the Navier—Stokes
equations with that of the following Langevin-type stochastic model:

(B:é)

((—% + (v +n(k, t))k2> u=f(k,t) , | (1?:9)
in which
/ / Okpq(t) bkpq (g:t)dpdg . (BlO)

The forcing term f is such that:

z«k¢>zzmk{A<faawfaa@nM=mmds

— [ [ 00 cimB 0BGt . 1)
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where akpq and bipg are coefficients linked to the geometry of the triad
(k,p,q), defined as:

1
iy = 5(1 - o2 = W'2%), b = oy +2°) ,  (B1Y)

where z,y and z are the cosines of the angles of the triangle formed by the
wave vectors (k,p,q), opposed respectively to k, p and q. The relaxation
time Oppq(t) is evaluated as:

1 — e~ (B t+iptug)t

Opa(t) = , B.13
Omalt) = = (B.13)

where the damping factor uy is chosen as follows:

k .
py = vk® + 0,36 /0 p?E(p)dp . (B.14)

B.2 Cambon’s Anisotropic EDQNM Model

To study anisotropic homogeneous flows, we define the following two spectral
tensors [44] (see Appendix A):

@y(k) ~ (@ ()u;(k)) (B.15)

sl = [ 2509400 (B.16)

The evolution equation for the quantities ¢s; (k) in the presence of mean
velocity gradients is:

2 5017 gty =~ g, 1) - 2
(B 20k?) duth) = ~ ottt = b ou(s)
+ P (k) + 8j;(k)

+ P;;.‘(k)+s,¥‘;( Y (B.17)
where »
oy [k
PL(k) =2 6;:; [ 09 + B0 4409, (B9
S1;(k) = ‘9<“>‘ ég—(kl@ﬁ(k))dA(k) , (B.19)
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Pil(k) = — / %[kmj(k)'Jrk,-Tg(k)] dAk) (B.20) |

Sy (k) = f [Ti(k) + T35 (k)] dA(K) . (B.21)

Equation (B.17) is closed by replacing ®(k) with a modeled form as a
function of ¢(k), where the direction of k is controlled in the integrals (B.18)
to (B.21): -

Pl(k) = 2606) | 253

= 9D (S H0)-+ SV 1) - 2 SV o8
Sl _ 2 0 0
i5(k) = ~ 12 (S)iigr (RE(K)) + 2(S)ir gz (RDE(k)Hji(k))

+ 2(S) EDE(k)Hy(k))

0
gy (
— 26(S)im o (12 + 11D KB () Him(R)) (B.23)

PE) = [ [ O (@ + y2)Higla) [FPER)B(g) (4(=* — 47)(ala) + )
+ e @) - PER B ) (alo) + 3| vz, (320

Si(k) = / / 6'“”3% {(my +2°) (1?2pE(p)E(q) {%51'1' + Hij(p)
+Hi;(q)} — p*E(k)E(q) {é%’ + Hy;(k) + Hij(Q)})
+ Hij(q) (K*pE(D)E(q)ckpy — P°E(k)E(q)core)] dpdg,  (B.25)
where

8) =5 (Vi + V() (@)= 1 (Vi) - V)

and x, y and z are the cosines of the interior angles opposite the wave "
vectors k, p and q, respectively, in the triangle formed by these vectors.

The anisotropy parameter a(k) is optimized by the Rapid Distortion Theory. -
The factor D is defined as:
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p-2(isk) w20

The energy and anisotropy spectra, denoted respectively E(k) and H, i (k),
are given by the relations:

E(k) = %qbu (k) ) (B.27)
(k) 1
Hy(k) = 33 - 365 (B.28)
The geometric factor cgpq is defined as:
iy = 560+2) |07 = a0+ + Jal)1+)] . (B29)

The relaxation time Oy (t) is evaluated as:

1 — e~ {(Hrtiptug)t
Okpq(t) = , (B.30)
Mk + [p T+ [ig

where the damping term py, is:
1/2

pr = vk + 0,36 (/kp2E(p)dp + (5 (Q>ij> : (B.31)
0

It should be noted that fully anisotropic versions, which call for no angular
parameter setting, have been proposed and compared with simulations for the
case of pure rotation and stable stratification [56].
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also reflects the local effects at the cutoff. The other basic assumptions
underlying the Chollet—Lesieur model are maintained.

4. The Lesieur-Rogallo model (p.79), which computes the intensity of the
transfers by a dynamic procedure. This is an extension of the Chollet-
Lesieur model for flows in spectral disequilibrium, as modifications in
the nature of the transfers to the subgrid scales can be considered. The
dynamic procedure consists in including in the model information relative
to the energy transfers at play with the highest resolved frequencies. The
assumptions concerning the filter are not relaxed, though.

. Models based on the analytical theories of turbulence (p.80), which com-
pute the effective viscosity without assuming anything about the spec-
trum shape of the resolved scales, are thus very general. On the other
hand, the spectrum shape of the subgrid scales is assumed to be that of
a canonical inertial range. These models, which are capable of including
very complex physical phenomena, require very much more implementa-
tion and computation effort than the previous models. The assumptions
concerning the filter are the same as for the previous models.

(W24

Chollet—Lesieur Model. Subsequent to Kraichnan’s investigations, Chol-
let and Lesieur [61] proposed an effective viscosity model using the results
of the EDQNM closure on the canonical case. The full subgrid transfer term
including the backward cascade is written:

Tsegs(k‘kc) = _Zsz(k')Ve(Mkc) ) (4'15)

in which the effective viscosity ve(k|k.) is defined as the product

Ve(klke) = v (klke)ve® . (4.16).

The constant term v2°, independent of k, corresponds the asymptotic
value of the effective viscosity for wave numbers that are small compared
with the cutoff. wave number k.. This value is evaluated using the cutoff
energy E(k.):

- E(k
Ve = 0.441K; %/ Bk) (4.17)
ke
The function ve(k|k.) reflects the variations of the effective viscosity in
the proximity of the cutoff. The authors propose the following form, which
is obtained by approximating the exact solution with a law of exponential
form:

K3/2
vt (klke) =1+ V‘;o 15.2 exp(—3.03kc/k) - . . (4.18)

This form makes it possible to obtain an effective viscosity that is nearly
independent of k for wave numbers that are small compa™ ~ with ke, with a
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finite increase near the cutoff. There is a limited inclusion of the backward
cascaGe with this model: the effective viscosity remains strictly positive for all
wave numbers, while the backward cascade is dominant for very small wave
numbers, which would correspond to negative values of the effective viscosity.

Constant Effective Viscosity Model. A simplified form of the effective
viscosity of (4.16) can be derived independently of the wave number k [190].
By averaging the effective viscosity along k and assuming that the subgrid
modes are in a state of energy balance, we get:

velhlke) = ve = 2K, | B (4.19)
3 ke
Dynamic Spectral Model. The asymptotic value of the effective viscosity
(4.17) has been extended to the case of spectra of slope —m by Métais and
Lesieur [235] using the EDQNM closure. For a spectrum proportional to
k™™, m < 3, we get: .

5—m ~3/2 E (kc)
> =0.31——v3 —mK, —_ 4.
v (m) o V3 —mK, I (4.20)
For m > 3, the energy transfer cancels out, inducing zero effective viscos-
ity. Here, we find a behavior similar to that of two-dimensional turbulence.
Extension of this idea in physical space has been derived by Lamballais and
his coworkers [177,311].

Lesieur—Rogallo Model. By introducing a new filtering level correspond-
ing to the wave number k,,, < k., Lesieur and Rogallo [191] propose a dynamic
algorithm for adapting the Chollet—Lesieur model. The contribution to the
transfer T'(k), k < ke, corresponding to the (k, p, q) triads such that p and/or
q are in the interval [k, k], can be computed explicitly by Fourier trans-
forms. This contribution is denoted Tyyp(k|km, ko) and is associated with the
effective viscosity:

Tsub(klkm) kc)

ve(kllem ko) = === 5 (k)

(4.21)
The effective viscosity corresponding to the interactions with wave num-
bers located beyond ky, is the sum:

Ve(klkm) = ve(klkm, k) + ve(klke) - (4.22)

This relation corresponds exactly to Germano’s identity and was previ-
ously derived by the authors. The two terms ve(k|k.,) and ve(k|k:) are then
modeled by the Chollet-Lesieur model. We adopt the hypothesis that when
k <k, then k < k¢, which leads to v} (k|kn) = v (0). Relation (4.22) then
leads to the equati



